In vitro and in vivo induction of fetal hemoglobin with a reversible and selective DNMT1 inhibitor Aidan G. Gilmartin,¹ Arthur Groy,¹ Elizabeth R. Gore,¹ Charity Atkins,¹ Edward R. Long,¹ Monica N. Montoute,¹ Zining Wu,¹ Wendy Halsey,¹ Dean E. McNulty,¹ Daniela Ennulat,¹ Lourdes Rueda,¹ Melissa B. Pappalardi,¹ Ryan G. Kruger,¹ Michael T. McCabe,¹ Ali Raoof,² Roger Butlin,² Alexandra Stowell,² Mark Cockerill,² Ian Waddell,² Donald Ogilvie,² Juan Luengo,¹ Allan Jordan² and Andrew B. Benowitz¹ ¹GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and ²Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester, UK °MC current address: MediTech Media, Manchester, UK; IW current address: Charles River Laboratories, Saffron Walden, UK; DO current address: Framingham Consulting Limited, Manchester, UK; JL current address: Prelude Therapeutics, Newark, DE, USA; AJ current address: Sygnature Discovery Limited, Nottingham, UK ©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.248658 Received: January 30, 2020. Accepted: June 18, 2020. Pre-published: June 25, 2020. Correspondence: ANDREW B. BENOWITZ - Andrew.B. Benowitz@GSK.com #### **Supplemental Information** ## In vitro and in vivo induction of fetal hemoglobin with a reversible and selective DNMT1 inhibitor Aidan G. Gilmartin^{1,*}, Arthur Groy¹, Elizabeth R. Gore¹, Charity Atkins¹, Edward R. Long III¹, Monica N. Montoute¹, Zining Wu¹, Wendy Halsey¹, Dean E. McNulty¹, Daniela Ennulat¹, Lourdes Rueda¹, Melissa Pappalardi¹, Ryan G. Kruger¹, Michael T. McCabe¹, Ali Raoof², Roger Butlin², Alexandra Stowell², Mark Cockerill^{2,3}, Ian Waddell^{2,4}, Donald Ogilvie^{2,5}, Juan Luengo^{1,6}, Allan Jordan^{2,7}, Andrew B. Benowitz^{1,*} ¹ GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania, 19426, USA. ² Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, UK ³ Current affiliation: MediTech Media, Manchester, UK ⁴ Current affiliation: Charles River Laboratories, Essex, UK ⁵ Current affiliation: Framingham Consulting Limited, Manchester, UK ⁶ Current affiliation: Prelude Therapeutics, Newark, Delaware, USA ⁷ Current affiliation: Sygnature Discovery Limited, Nottingham, UK ^{*}e-mail: Aidan.G.Gilmartin@gsk.com; Andrew.B.Benowitz@gsk.com #### **Supplemental Methods:** #### In vitro Maturation of CD34+ Cells to Reticulocytes CD34⁺ cells were seeded in T25 flasks in erythroid expansion media: Stemspan H3000 (StemCell Technologies) supplemented with 2 mM L-glutamine, 40 μg/mL human low-density lipoproteins (StemCell Technologies), 10 ng/mL recombinant human (rh) interleukin IL-3, 100 ng/mL rh stem cell factor (R&D Systems), and 0.5 U/mL rh erythropoietin (Invitrogen). Expansion media also included either vehicle (0.3% DMSO) or compound dissolved in DMSO. After 4 days, cells were centrifuged, and media and compounds were replaced. On day 7, cells were collected and plated in a 24 well dish in phase 2 differentiation media:IMDM containing 1X BIT supplement (StemCell Technologies), 3% male AB serum (Invitrogen), 3 U/mL heparin (Sagent Pharmaceuticals), 3 U/mL rhEPO (Invitrogen), and 10 ng/mL rhSCF (R&D Systems), with vehicle or compound. On day 12, media was again exchanged for phase 3 differentiation media: phase 2 media without rhSCF and with 800 μg/mL holo-transferrin, with vehicle or compound. Cells were incubated for an additional 5 days, and were then harvested for flow cytometry analysis of HbF⁺ reticulocytes as detailed below. #### **HbF ELISA** Cryopreserved day 7 EPCs were thawed and cultured with compounds for 5 days after which cells were lysed by freezing and thawing in cell lysis buffer (Invitrogen) supplemented with $1 \times$ protease inhibitors. Lysates were then assayed with an anti-HbF ELISA, conducted according to previously described methods. (23) #### Cell Growth and Apoptosis Assays EPCs were cultured as above with compounds or vehicle for 3 days for caspase assay or 5 days for cell growth assay, after which either Caspase-Glo reagents or Cell Titer-Glo (Promega), respectively, were added for 10 min incubation prior to reading luminescence on a ViewLux 1430 (Perkin Elmer). #### Global CpG Methylation Assay Genomic DNA was extracted from cultured EPCs using a genomic DNA isolation kit (Zymo Research). DNA was then fully degraded into nucleosides using the Zymo degradase plus kit and reaction buffer (Zymo Research). DNA hydrolysis samples were injected onto a HILIC ultra-performance liquid chromatography (UPLC) column (ACQUITY UPLC BEH Amide Column, 130 Å, 1.7 μ m, 2.1 mm X 50 mm, Waters) equilibrated in acetonitrile:methanol (90/10, v/v), and eluted with a linear gradient of 10 mM ammonium bicarbonate, pH 9). Cytosine and methylcytosine content was quantified by selected reaction monitoring mass spectrometry, conducted as previously described. (27) #### mRNA Analysis EPCs or bone marrow cells were pelleted into 1.5 mL microcentrifuge tubes, supernatant was removed, and cells were washed with DPBS. Cells were lysed in 500 μ L of Trizol reagent and total RNA was isolated using a Direct-zol mRNA isolation kit (Zymo Research). Samples were assessed for total RNA content on a Nanodrop (Thermofisher), and 1 μ g of total RNA was then converted into cDNA in a 50 μ L reaction using the High Capacity cDNA RT kit + RNase inhibitor (Applied Biosystems). Resulting cDNA was applied to TaqMan (Life Technologies) quantitative PCR assays for human *HBG1*, *HBA1*, *HBB*, or *GAPDH* following vendor's protocols in 50 μ L reactions. Reactions were run on a ViiA 7 using TaqMan Fast reagents standard protocol. #### <u>DNMT Biochemical Methyltransferase Assays</u> Break light format in vitro methyltransferase assays [33] for DNMTs were conducted in 384 well format, using black non-binding surface microplates (Corning). A final concentration of 40 nM human full length DNMT1 (produced internally) was added to substrate mixture containing final concentrations of 125 nM hemi methylated oligonucleotide (synthesized at ATD Bio; 5'-FAM-ATCTAGCG**5**ATCAGTTTTCTGATG**5**G**5**TAGAT-Dabcyl-3' 5 where methyl deoxycitidine) and 2 µM ultrapure SAM (Cisbio #62SAHZLD). Negative control wells included all other reagents but 0 μ M SAM. All reagents were made up in 1× assay buffer (20 mM Tris pH 6.8, 25 mM NaCl, 0.5mM MgCl₂, 0.01% Triton X100 and 1 mM DTT). The reaction was incubated at 26 °C for 45 min and then stopped with the addition of detection reagent. Detection reagent, made up in 1x Gla assay buffer (20mM Tris pH 8.0, 80 mM NaCl, 0.75mM MgCl₂, 0.01% Triton X100 and 1mM DTT) has a final concentration of 100 μM SAH (Sigma) and 0.0008 units/μl Gla1 restriction endonuclease (Sibenzyme #E494). Following addition of the detection reagent the plate was incubated in the dark at room temperature for 5 hr. Fluorescence intensity was then measured on the PHERAstar FS (BMG Labtech) at Ex 485 nm and Em 520 nm, with a gain of 400 and an integration time of 100 ms. DNMT3A and DNMT3B break light assays were as above with the following differences. DNMT3A and DNMT3B (produced internally), were used at final concentrations of 600 nM_and 300 nM respectively). Negative control wells for two assays included all other reagents but included 200 μ M SAH or 40 μ M SAH respectively. For the DNMT3A, all reagents were made up in 1× assay buffer (20 mM Tris pH 7.4, 100 mM NaCl, 1.5 mM EDTA, 0.1mM MgCl₂, 1mM CHAPS and 1 mM DTT) and the reaction was incubated at 37 °C for 90 min. For the DNMT3B assay, all reagents were made up in 1× assay buffer (20 mM Tris pH 6.8, 75 mM NaCl, 1.5 mM EDTA, 0.5mM MgCl₂, 1mM CHAPS and 1 mM DTT) and the reaction was incubated at 37 °C for 90 min. Detection reagents were made up in 1× Gla assay buffer as above, but with inclusion of 200 μ M SAH or 40 μ M SAH respectively. #### Bisulfite sequence analysis Genomic DNA was extracted in duplicate from EPCs cultured for 3 days in the presence of compound using the Maxwell 16 Cell DNA Purification Kit on the Promega Maxwell 16 (Promega). Isolated DNA was then bisulfite converted using a Zymo EZ DNA Methylation Kit (Zymo Research). Primer sets for bisulfite treated regions were designed from HBG1 and HBG2 sequence using ABI's Methyl Primer Express Software (ThermoFisher). Analyzed regions included nine previously described sites of DNMT1-dependent DNA methylation [37]. The PCR amplicons were between 253bp and 295 bp. Multiplex PCR amplification of all samples was performed using 48×48 Integrated Fluidic Circuit chips (Fluidigm) as recommended by the manufacturer in combination with the Kapa HiFi+ Uracil Polymerase. The resulting amplicons were harvested and barcoded according to the Fluidigm instrument's guidelines. After barcoding, samples were purified using Ampure XP (Beckman Coulter) and sizing was evaluated using the Agilent High Sensitivity DNA kit on the 2100 Bioanalyzer (Agilent). The samples were then normalized using the Kapa Illumina Quantification kit (Illumina) and prepared for massively parallel sequencing using a MiSeq V3 600 bp Reagent Kit (Illumina) with paired-end sequencing (2x 251cycle) according to the manufacturer's guidelines. An average of ~2.3 million reads were generated per sample. Low-quality nucleotides and adapter sequences were trimmed during QC. The output data was quality-checked using a pre-alignment raw data QC workflow in ArrayStudio v8 (Omicsoft) and assembled to reference with variant calling performed using the CLC-Genomics Workbench v8.1 program (Qiagen). | Am
plic
on | Chr
(GRc
h37/
hg1
9) | Target
start
positi
on | Target
end
positi
on | Target
Name | primer
forward | Target
Name | primer
reverse | amplic
on size | |------------------|----------------------------------|---------------------------------|-------------------------------|--------------------------------------|---|--------------------------------------|---|-------------------| | 1 | chr1
1 | 52704
06 | 52707
06 | 1_Methylati
on5270556_
HBG1_1f | ACACTGA
CGACATG
GTTCTAC
AGATTTTT
TTGGGAG
ATGTTATA
AA | 1_Methylation
5270556_HBG
1_1r | TACGGTA GCAGAGA CTTGGTC TATTACC ACTAAAT CTCAACC CA | 270 | | 2 | chr1
1 | 52707
84 | 52710
84 | 2_Methylati
on5270934_
HBG1_2f | ACACTGA
CGACATG
GTTCTAC
ATTTGGA
AYGTTTG
AGGTTAT
TA | 2_Methylation
5270934_HBG
1_2r | TACGGTA GCAGAGA CTTGGTC TCCATAA ATAAACA ACCAAAA ACC | 280 | | 3 | chr1
1 | 52709
84 | 52712
84 | 3_Methylati
on5271134_
HBG1_3f | ACACTGA
CGACATG
GTTCTAC
AATGTAA
ATATTTGT
TTGAAAY
GGT | 3_Methylation
5271134_HBG
1_3r | TACGGTA
GCAGAGA
CTTGGTC
TTCCTCCT
CTATAAA
ATAACCC
A | 258 | | 4 | chr1
1 | 52718
89 | 52721
89 | 4_Methylati
on5272039_
HBG1_4f | ACACTGA
CGACATG
GTTCTAC
ATTGTGT
TAGAAAT
AAAGTTG
TTTAAAG | 4_Methylation
5272039_HBG
1_4r | TACGGTA
GCAGAGA
CTTGGTC
TTAACCC
AAAATTTT
AACRTAA
CT | 262 | | 5 | chr1
1 | 52747
34 | 52750
34 | 5_Methylati
on5274884_
HBG2_5f | ACACTGA
CGACATG
GTTCTAC
AGGTAAA
GTATGTT
TAGGGGT
GA | 5_Methylation
5274884_HBG
2_5r | TACGGTA
GCAGAGA
CTTGGTC
TAACTTC
CCTCAAA
ACCTAAA
AT | 274 | | 6 | chr1
1 | 52750
68 | 52753
68 | 6_Methylati
on5275218_
HBG2_6f | ACACTGA
CGACATG
GTTCTAC
AATGTTTT
AGGGTTT
AAGGAGT
GTT | 6_Methylation
5275218_HBG
2_6r | TACGGTA
GCAGAGA
CTTGGTC
TTATATTT
AACCACC
AAAATTC
CC | 253 | | 7 | chr1
1 | 52755
20 | 52758
20 | 7_Methylati
on5270934_ | ACACTGA
CGACATG | 7_Methylation
5270934_HBG | TACGGTA
GCAGAGA | 274 | | | | | | HBG2_7f | GTTCTAC
AGGATTT
GTGGTAT
TTTTTGAT
T | 2_7r | CTTGGTC
TACCTTA
AAATTCT
CAAAATC
CA | | |----|-----------|-------------|-------------|--|--|--|---|-----| | 8 | chr1 | 52757
90 | 52760
90 | 8_Methylati
on5270934_
HBG2_8f | ACACTGA
CGACATG
GTTCTAC
AGAGTAT
TTAGTGA
GGTTAGG
GG | 8_Methylation
5270934_HBG
2_8r | TACGGTA
GCAGAGA
CTTGGTC
TTTTTACC
AAACACA
AAATCCT | 277 | | 9 | chr1
1 | 52760
60 | 52763
60 | 9_Methylati
on5270934_
HBG2_9f | ACACTGA
CGACATG
GTTCTAC
AGGTTGA
TAAAAGA
AGTTTTG
GT | 9_Methylation
5270934_HBG
2_9r | TACGGTA GCAGAGA CTTGGTC TCCCCTA ACCTCAC TAAATACT C | 295 | | 10 | chr1
1 | 52763
40 | 52766
40 | 10_Methylat
ion5276490
_HBG2_10f | ACACTGA
CGACATG
GTTCTAC
ATTGAAA
TTGTTGTT
TTATAGG
ATT | 10_Methylatio
n5276490_HB
G2_10r | TACGGTA
GCAGAGA
CTTGGTC
TCCAAAA
CTTCTTTT
ATCAACC | 292 | | 11 | chr1
1 | 52770
60 | 52773
60 | 11_Methylat
ion5277210
_HBG2_11f | ACACTGA
CGACATG
GTTCTAC
AGATTAT
GAAGTTT
GAAAGGA
TTTT | 11_Methylatio
n5277210_HB
G2_11r | TACGGTA GCAGAGA CTTGGTC TCATATTA ACCACTT AACATAA CAAAAA | 253 | | 12 | chr1
1 | 52792
36 | 52795
36 | 12_Methylat
ion5279386
_HBG2_12f | ACACTGA
CGACATG
GTTCTAC
ATGTGGT
TTAGATTT
TTAGGTT
TT | 12_Methylatio
n5279386_HB
G2_12r | TACGGTA GCAGAGA CTTGGTC TAAAAAT ACATTAC AACTCCC ACT | 262 | #### Western Blot EPCs were cultured with compounds for 24 hours and then lysed in RIPA buffer (Teknova) with phosphatase and protease inhibitors (Roche). Lysates were briefly sonicated on ice, and then clarified by centrifugation at 20,000 RCF for 10 minutes. After determination of protein concentration, equal amounts of total protein were prepared in loading buffer (Invitrogen) and loaded on Tris Acetate gels (Invitrogen). Gels were run at 150V and then transferred to nitrocellulose membranes (iBlot System, Thermofisher). Resulting membranes were blocked for 2 hours with blocking buffer (Odyssey), and then probed with primary antibodies in a 1:1 mix of blocking buffer and PBS + 0.1% TWEEN 20 at 4°C overnight. Antibodies used were DNMT1, DNMT3A, and Vinculin (Cell Signaling Technologies) and DNMT3B (Sigma). Primary antibody mix was removed, membranes were washed repeatedly with PBS + 0.1% TWEEN 20, and membranes were probed with Odyssey secondary antibodies for 2 hours at room temperature. Blots were again washed repeatedly and were then scanned using Licor IR scanner. Band densitometries were analyzed with Odyssey v2.1. **Supplemental Table 1. Effects of alternative decitabine dose regimens** *in* **SCD mouse model.** Results are for 4 studies and reflect mean values for each dose group of %F-cells (flow cytometry) or %HbF (HPLC) in whole blood. | Study | Dose
(mg/kg) | Frequenc
y | %F-cell
Fold-
Change
(FC) | %HbF
Fold-
Change
(HPLC) | |-------|-----------------|---------------|------------------------------------|-----------------------------------| | 1 | 0.1 | QD M-F | 1.3 | nd | | 1 | 0.3 | QD M-F | 2.5* | nd | | 1 | 0.9 | QD M-F | nd † | nd | | | | | | | | 2 | 0.3 | QD M-F | 5.9† | 2.9† | | | | | | | | 3 | 0.3 | QD M,W,F | nd | 2.0 | | | | | | | | 4 | 0.2 | QD M,W,F | nd | 1.1 | | 4 | 0.4 | QD M,W,F | nd | 2.0* | | 4 | 0.8 | QD M,W,F | nd | 4.8† | nd: not done *: P < 0.01 most effective tolerated dose † : not tolerated (≥ 33% mortality) **Supplemental Table 2. Effects of decitabine (M,W,F)** *in vivo* **on peripheral blood.** Mean +/- SD are shown. Statistically significant treatment-related differences from vehicle-treated mice are indicated in bold font. Asterisks indicate significance by 1-way ANOVA. (*: P < 0.01; **: P < 0.001) | Study 2-
Decitabin
e | <i>RBCs</i>
(x10 ⁶ /μl) | Platelets
(x10³/μl) | Neutrophi
Is
(x10³/μl) | Lymphocy
tes
(x10³/μl) | Monocyte
s
(x10³/μl) | % Change
DNA
Methylati
on | |----------------------------|---------------------------------------|------------------------|------------------------------|------------------------------|----------------------------|------------------------------------| | Vehicle | 7.7 ± 0.7 | | 3.8 ± 1.2 | | | | | 0.2 mg/kg | 5.9 ± 0.5
** | 657 ± 122 | 2.1 ± 0.4
* | 8.1 ± 1.0 | 0.2 ± 0.2
* | -4.3 ± 6.5 | | 0.4 mg/kg | 4.8 ± 0.9 | 553 ± 57 | 0.8 ± 0.2 | 5.8 ± 1.7 | 0.2 ± 0.1 | -9.3 ± 11.3 | $$0.8 \text{ mg/kg} \begin{vmatrix} ** & ** & * & * \\ 1.7 \pm 0.3 & 427 \pm 61 * & 0.09 \pm & 2.5 \pm 1.1 & 0.0 \pm 0.0 \\ ** & 0.06 ** & ** & * & 6.0 \end{vmatrix} -13.2 \pm 6.0$$ Supplemental Figure 1. Effect of DNMT1 inhibitor on methylcytosines around HBG1 and HBG2 by bisulfite sequencing. Depicts the bisulfite sequencing results for EPCs treated for 3 days with 10 μ M GSK3484862 (an active diastereomer of GSK3482364). Sites of methylation are labeled as positions relative to respective start sites for HBG1 and HBG2. 1 ### Supplemental Figure 2. Effect of GSK3482364 or decitabine on DNMT **protein levels.** (A) Immunoblots of EPCs treated for 24 hours with GSK3482364 or decitabine. Vinculin is included as a high MW loading control. (B) Densitometry of bands with Odyssey software, corrected for vinculin band signal as loading control. **Supplemental Figure 3. Effects of GSK3482364** *in vivo* **on reduced frequency dose schedule and longer duration dosing.** (A) %HbF by HPLC in whole blood of transgenic sickle cell mice treated with GSK3682364A for 11days, dosed orally, b.i.d. for either 3 (black) or 5 (gray) weekdays per week. (B) %HbF of transgenic sickle cell mice treated with GSK3682364A for 2 weeks or 4 weeks, dosed orally, b.i.d. for 3 weekdays per week. Bars represent mean %HbF +/- SD from 5-6 mice. (**: P <0.001).