Deciphering the Ets-1/2-mediated transcriptional regulation of F8 gene identifies a minimal F8 promoter for hemophilia A gene therapy

Rosella Famà,^{1*} Ester Borroni,^{1*} Simone Merlin,¹ Chiara Airoldi,² Silvia Pignani,¹ Alessia Cucci,¹ Davide Corà,^{2,3} Valentina Bruscaggin,¹ Sharon Scardellato,¹ Stefania Faletti,⁴ Giuliana Pelicci,^{2,4} Mirko Pinotti,⁵ Gillian E. Walker¹ and Antonia Follenzi¹

¹Department of Health Sciences, Università del Piemonte Orientale, Novara; ²Department of Translational Medicine, Università del Piemonte Orientale, Novara; ³Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara; ⁴Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan and ⁵Department of Life Sciences and Biotechnology, Università di Ferrara, Ferrara, Italy

*RF and EB contributed equally as co-first authors

©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.239202

Received: October 3, 2019. Accepted: May 20, 2020. Pre-published: May 28, 2020. Correspondence: *ANTONIA FOLLENZI* - antonia.follenzi@med.uniupo.it

SUPPLEMENTAL DATA

Deciphering the Ets-1/2-mediated transcriptional regulation of F8 gene identifies a minimal F8 promoter for hemophilia A gene therapy

Rosella Famà^{1†}, Ester Borroni^{1†}, Simone Merlin¹, Chiara Airoldi², Silvia Pignani¹, Alessia Cucci¹, Davide Corà^{2,3},Valentina Bruscaggin¹, Sharon Scardellato¹, Stefania Faletti³, Giuliana Pelicci^{1,3} Mirko Pinotti⁴, Gillian E. Walker¹ and Antonia Follenzi^{1*}

SUPPLEMENTAL METHODS

Cell culture

The epithelial-like cell line ECV-304 (ATCC® CRL-1998TM) and the human embryonic kidney cell line HEK293T (ATCC® CRL-11268TM) were cultured in DMEM and IMDM media (Gibco, Thermo Fisher Scientific), respectively. Each media was supplemented with 10% FBS, 100 U/ml penicillin and 100 μ g/ml streptomycin. Cells were grown at 37°C in 5% CO₂ incubator.

Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting (WB) analyses

Total RNA was isolated from ECV-304, HEK293T and Blood Outgrowth Endothelial Cells (BOEC), cells using the TRIzol Reagent (Thermo Fisher Scientific) and reverse transcribed using the High Capacity cDNA kit (Applied Biosystems, Foster City, CA). The presence of *F*8, Ets-1 and Ets-2 transcripts in each sample was evaluated by RT-PCR. All the primers used are listed in Supplementary table 1. For WIB analyses, proteins were extracted by lysing ECV-304 and HEK293T with RIPA buffer (50mM Tris pH7.5, NaCl 150mM, 0.1% SDS, 1% NP-40, 1% DOC) in the presence of a protease inhibitor cocktail (Roche). The concentration of whole cell lysates was determined using a BCA assay (Thermo Fisher Scientific), according to the manufacturer's instructions. A total of 30µg of protein was resolved on a 10% sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE), transferred to polyvinylidene difluoride (PVDF; BioRad) membranes and incubated separately overnight at 4°C with specific primary antibodies: α -ETS-1 (sc-55581; 1:500; Santa Cruz), α -ETS-2 (sc-351; 1:500; Santa Cruz) or α - β -actin (1:5000; Sigma).

secondary antibody and resolved using the enhanced chemiluminescence (BioRad). Images were captured using ChemiDoc Imaging System and analyzed by ImageLab Software (BioRad).

Lentiviral Vector preparation

Third-generation LVs were produced according to published protocols¹. Following collection, vector particles were titrated by transduction of ECV-304 or HEK293T cells using limiting dilutions. The GFP expressing LVs were titrated by flow cytometry analysis (FACS), while FVIII-expressing LVs were quantified as number of integrated copies by quantitative-PCR (qPCR). Primers used for qPCR are listed in Supplementary table 6.

Animal studies

In vivo experiments were performed according to an approved protocol by the Animal Care and Use Committee of UPO, Novara, Italy (approval n°492/2016-PR 10/03/2016). The C57BL/6 mice (The Jackson Laboratories, Stock No 000664) and B6;129S-F8^{tm1}Kaz/J (The Jackson Laboratory, Stock No 004424)² hemophilic mice (B6/129 HA) were housed under standard conditions. Both strains were tail vein injected at 8 weeks of age with 5×10^8 or 1×10^9 TU of LVs expressing GFP (n=3-5) or FVIII (n=4-6), respectively, under the control of 600 bp, 442 bp and 342 bp *pF8* or the ubiquitous *PGK* promoter.

Immunofluorescence analysis of mouse tissues

Liver and spleen of LV injected mice were collected, fixed in 4% paraformaldehyde (PFA) in Phosphate Buffered Saline (PBS), equilibrated in 15% sucrose overnight followed by 30% sucrose for 48h and embedded in optimal cutting temperature (OCT) medium. For each organ, 4-µm cryostat sections were cut, post-fixed in 4% PFA and blocked with a solution of PBS-0.1% Triton X-100 (PBS-T), 1% BSA and 5% goat serum. Primary antibodies were incubated in PBS-T with 2% of goat serum for 1 h in a humid chamber. Secondary antibodies were diluted in PBS-T with DAPI (4',6-Diamidino-2-phenylindole, nuclei staining) and incubated for 30 min in dark humid chamber. Slices were washed in PBS and mounted with Mowiol[®]4-88 (Sigma Aldrich) 20% in TBS. Images were taken using a fluorescence microscope (Leica DM 2500) and analyzed by LASX (Leica Application Suite X). Primary and secondary antibodies are listed in Suppl Tab 5.

FVIII activity assay and anti-FVIII antibody detection

FVIII activity and anti-FVIII antibodies were monthly assessed in plasma of LV-treated B6/129 HA mice as previously described²⁹. FVIII activity was expressed as a percentage of correction and

measured using the activated partial thromboplastin time (aPTT) assay generating a standard curve of serially diluted Refacto® pooled hemophilic mouse plasma. Anti-FVIII antibodies were evaluated using a direct ELISA by incubating mouse plasma in a 96-well plate coated with 5µg/ml Refacto® saturated with BSA (0.2% TBS-BSA). After the incubation with HRP-conjugated goat anti-mouse total IgG (Thermo Fisher Scientific), the reaction was developed with the addition of tetramethylbenzidine and absorbance measured at 450nm using a Victor X spectrophotometer (PerkinElmer). The plasma of LV.PGK.FVIII treated B6/129 HA mice was used as positive control.

SUPPLEMENTAL REFERENCES

- 1. Follenzi A, Naldini L. Generation of HIV- 1 derived lentiviral vectors. Methods Enzymol 2002;346454–465.
- 2. Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 1995;10(1):119–121.

SUPPLEMENTAL TABLES

Table S1. RT-PCR primers

Primer name	Primer sequence	Primer use
hF8_EX19F	CCTTATTGGCGA GCATCTACA	RT-PCR
hF8_EX22R	TTGGTGCCAACA GATCCAC	RT-PCR
hEts-1_EX6F	CATATCAAGTTAATGGAGTC	RT-PCR
hEts-1_EX7R	TGTTTGATAGCAAAGTAGTC	RT-PCR
hEts-2_EX6F	GTGGA GTGA GCAACA GGTAT	RT-PCR
hEts-2_EX7-8R	CCAAAACCTAATGTATTGCTG	RT-PCR
hBactin_F	ACTACCTCATGAAGATCCT	RT-PCR
hBactin_R	TGGTACCA CCA GACA GCA CT	RT-PCR

Table S2. Primers for shortened F8 promoters cloning

Primer name	Primer sequence	Primer use	Lost	Lost TFBS	
pF8600_XhoI_F	CAGCCTCGAGGTTTTTAAAACAATAGTTGCCTAACC	pF8 deletion			
pF8446_XhoI_F	CAGCCTCGA GCTA GAATCTTCGA CAACATCCA GA	pF8 deletion		1 Ets-2	
pF8342_XhoI_F	CAGCCTCGA GTGACTTCTCCATCCCTCTCC	pF8 deletion	1 Ets-1	1 Ets-2	
pF8246_XhoI_F	CAGCCTCGA GGCCTCCCTTTTGCTA CTTCA	pF8 deletion	2 Ets-1	1 Ets-2	
pF8_HindIII_R	CGCAAGCTTGACTTATTGCTACAAATGTTCAAC	pF8 deletion			

Table S3. Mutagenesis primers for F8 promoter Ets-core deletion

Primer name	Primer sequence	Disrupted TFBS	
pF8_E1_F	CTTCCCACTGATAAAAAGCAATCCTATCGGTTACTG	Eta 1 and Eta 2	190 to 109
pF8_E1_R	CAGTAACCGATA GGATTGCTTTTTATCA GTGGGAAG	EIS-1 allu EIS-2	-169 10 -196
pF8_E2_F	TGCTACTTCA GTTCTGTGGCTGCTTCCCAC	Eta 1	217 + 222
pF8_E2_R	GTGGGAA GCA GCCACA GAA CTGAA GTA GCA	Ets-1	-217 10 -225
pF8_E3_F	CATCCCTCTCCTCTTAAAGGTTCTGATTAAAG	Eta 1	210 to 210
pF8_E3_R	CTTTAATCAGAACCTTTAAAGGAGGAGAGGAGGATG	E18-1	-510 10 -519
pF8_E4_F	CTTGCTGCCA CTCA GA GGGTTGGA GTA GGCTA G	Eta 1	205 to 401
pF8_E4_R	CTAGCCTACTCCAACCCTCTGAGTGGCAGCAGCAAG	E18-1	-393 10 -401
pF8_E5_F	ACAGTTTTAAAAACTATAAATCATACTGGCAGCAGTGTGA		526 1 525
pF8_E_R	TCACACTGCTGCCA GTATGATTTATA GTTTTTAAAACTGT	Ets-2	-520 to -555

Primer name	Primer sequence	Primer use
Ets-1_DBD_del_F	ACCCCTGA GGA GCTGCACGCCATGCT	Ets-DBD deletion
Ets-1_DBD_del_R	P-TGGTCCA CTGCCTGTGTA GCCA GCTA	Ets-DBD deletion
Ets-2_DBD_del_F	TGCGACCTCCA GAACTTGCTGGGGTT	Ets-DBD deletion
Ets-2_DBD_del_R	P-AGGTCCACTTCCTGTGAAGCCGGCCA	Ets-DBD deletion

Table S4. Mutagenesis primers for Ets-1 and Ets-2 DNA binding domain deletions

Table S5. List of primary and secondary antibodies used for immunofluorescence

Primary antibodies	Host	Reactivity	Clone n°	Manufacturer	Dilution
Anti-GFP	rabbit		polyclonal	ThermoFisher	1:1000
Anti-Lyve-1-biotin	rat	mouse	ALY7	eBioscience	1:200
Anti-F4/80-biotin	rat	mouse	A3-1	AbD serotec	1:400
Anti-CD31	rat	mouse	MEC13.3	BD pharmingen	1:50
				_	
Secondary antibodies	Fluorophores	Manufacturer	Dilution	_	
Goat anti-rat IgG	Alexa Fluor 546	ThermoFisher	1:500		
Goat anti-rabbit IgG	Alexa Fluor 488	ThermoFisher	1:500	_	

Table S6. Primers for lentiviral vector integration analysis

Primer name	Primer sequence	Primer use
Wpre_F	TTGCTTCCCGTATGGCTTTC	Integration
Wpre_R	AGCTGACA GGTGGTGGCAAT	Integration
hGAPDH_Forward	A GTGGGT GT C G C T G T G A A G T	Integration
hGAPDH_Reverse	AACGTGTCA GTGGTGGACCTG	Integration

SUPPLEMENTAL FIGURES

Figure S1. HEK293T model confirmed the importance of the Ets-responsive elements in the proximal *F8* promoter. Histograms representing fold change in luciferase activity of shortened (A-B) and core deleted promoters (C-D) at basal level or after overexpression of Ets-1. Results are expressed as mean \pm SD from 3 independent experiments performed in triplicate. * p<0.05.

Figure S2. Mutations of E3, E4 and E5 Ets-BSs did not affect pF8 activity in ECV-304. (A-B) Histograms representing fold change in luciferase activity in ECV-304 cells of Ets core-deleted promoters not displayed in Figure 3F at basal level (A) or after (B) overexpression of Ets-1, Ets-2 or both. Results are expressed as mean \pm SD from 3 independent experiments performed in triplicate. * p<0.05.

Figure S3. Use of a guide RNA able to target F7 promoter in comparison with the Activation system in F8 promoters. Graph showing the transactivation effects of the sgRNA F8.2 and sgRNA F7.5 on pF8-1175, pF8-600 and pF8-342 in and HEK293T cells. Results are expressed as mean \pm SD from 2 independent experiments performed in triplicate.

Figure S4. *F8* shortened promoters drive GFP expression in hepatic endothelial cells after 1 month of LV delivery. Immunofluorescence analyses of C57BL/6 livers after LV.pF8-1175-GFP, LV.pF8-600.GFP, LV.pF8-446.GFP or pF8.342.GFP. (A) Liver sections stained for the endothelial marker (Lyve-1, in red) and the green fluorescent protein (GFP) using 400X magnification. (B) Liver of LV injected mice stained with the macrophage marker F4/80 (red) in combination with GFP (green). Scale bars, 50µM. Nuclei are stained with DAPI (blue).

Figure S5. GFP expression in spleens under the control of pF8 variants. Mice spleen sections, one month after delivery of LV carrying pF8 variants. In red the endothelial marker CD31 (left side) or the macrophage marker F4/80 (right side) with GFP (green). Nuclei are stained with DAPI (blue). Scale bars, 100μ M.

Figure S6. GFP expression in liver and spleens under the control of pF8-342 two months after delivery. Mice liver (A-B) and spleen (C-D) sections, two month after delivery of LV carrying pF8-342. Lyve-1 and CD31 were used as endothelial markers in the liver (A) and spleen (C) respectively. F4/80 was used as macrophage marker for both spleen and liver (B-D). All tissue markers are combined with GFP (green) and nuclei are stained with DAPI (blue). Scale bars, 100μ M.

Figure S2

Figure S4

