Molecular profiling reveals a hypoxia signature in breast implant-associated anaplastic large cell lymphoma

Naoki Oishi,^{1,2} Tanya Hundal,¹ Jessica L. Phillips,¹ Surendra Dasari,¹ Guangzhen Hu,¹ David S. Viswanatha,¹ Rong He,¹ Ming Mai,¹ Hailey K. Jacobs,¹ Nada H. Ahmed,^{1,3} Sergei I. Syrbu,⁴ Youssef Salama,¹ Jennifer R. Chapman,⁵ Francisco Vega,⁵° Jagmohan Sidhu,⁶ N. Nora Bennani,⁷ Alan L. Epstein,⁸ L. Jeffrey Medeiros,⁹ Mark W. Clemens,^{10#} Roberto N. Miranda^{9#} and Andrew L. Feldman^{1#}

¹Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; ²Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan; ³Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt; ⁴Department of Pathology, University of Iowa, Iowa City, IA, USA; ⁵Department of Pathology, University of Miami, Miami, FL, USA; ⁶Department of Pathology and Laboratory Medicine, United Health Services, Binghamton, NY, USA; ⁷Division of Hematology, Mayo Clinic, Rochester, MN, USA; ⁸Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA; ⁹Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA and ¹⁰Department of Plastic Surgery, MD Anderson Cancer Center, Houston, TX, USA

° Current affiliation: Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA

#MWC, RNM, and ALF contributed equally as co-senior authors.

©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.245860

Received: December 20, 2019. Accepted: May 14, 2020. Pre-published: May 15, 2020. Correspondence: *ANDREW L. FELDMAN* - feldman.andrew@mayo.edu

Molecular Profiling Reveals a Hypoxia Signature in Breast Implant-

associated Anaplastic Large Cell Lymphoma

Oishi N et al.

Supplemental Material

Supplemental Methods

Cell lines

Cell lines TLBR-1, TLBR-2, and TLBR-3 were established from BIA-ALCLs by A.L.E.^{1, 2} and were maintained in RPMI-1640 (Gibco) supplemented with 10% FBS (Clontech), 1% penicillin/streptomycin (Gibco), and 100 U/mL IL2 (R&D 202-IL-050). TLBR-1, -2, and -3 cells were cultured at a concentration of 0.5 x 10^{6} /mL for 72 h and resuspended in PBS. For experiments involving hypoxia, cells were incubated for 12-24 h at 37°C under humidified conditions in a Napco Series 8000 water-jacketed CO₂ incubator (Thermo Scientific) at 5% CO₂ and 1% O₂. For siRNA electroporation, cells in the same media without addition of penicillin/streptomycin were transfected with siRNA targeting *CA9* (ON-TARGETplus SMARTpool, L-005244-00-0010; Dharmacon) or a non-targeting control pool (ON-TARGETplus, D-001810-10-05). Protein expression and cell proliferation were assessed after 72 h as described below.

Western blotting

For western blotting, proteins were isolated from cell culture lysates in radioimmunoprecipitation assay (RIPA) buffer containing HALT, PMSF and Roche cOmpleteTM Mini protease inhibitors.

Proteins were quantified using the Biorad DC^{TM} assay and equal quantities were loaded and run on 10% Tris-HCl poly-acrylamide gels. Proteins were then transferred to nitrocellulose membranes and blocked with 1:1 TBS:Odyssey Blocking Buffer (LI-COR). Membranes were incubated overnight with the following primary antibodies: CA9 Rabbit mAb (D47G3; Cell Signaling), β -Actin (AC-15; Novus Biologicals LLC, Littleton, CO) and HIF-1 α (EP1215Y; Abcam). Protein detection was performed on a LI-COR Odyssey Fc using IRDye[®] 680W and 800CW secondary antibodies (LI-COR).

Cell proliferation assay

The MTS assay (CellTiter 96[®] AQueous Non-Radioactive Cell Proliferation Assay, Promega) was used to assess cell viability per the manufacturer's protocol. Briefly, 50,000 cells were plated per well after electroporation with control or *CA9* siRNA. Plates were incubated under normoxic conditions for 48 h to allow cell recovery and then cultured under either normoxic or hypoxic conditions for 24 h. Colorimetric determination was performed measuring absorbance at 490 nm after incubation with MTS reagent for 2-3 h.

Lentiviral CA9 overexpression

Lentiviral vectors included a commercially available human CA9 lentiviral vector (pLenti-GIII-EF1a, ABM Inc., #LV102843) and empty pLenti-GIII-EF1a vector as a control (ABM Inc., #LV588). For viral packaging, 293T cells were maintained using DMEM complete media supplemented with 10% FBS. On the day of viral packaging, cell media was changed to RPMI1640 complete media supplemented with 10% FBS. Transfection solution was prepared in Opti-MEMTM I Reduced Serum Medium (Thermo Fisher Scientific, 31985070) using Lipofectamine 3000 (Thermo Fisher Scientific, L3000015), lentiviral packaging plasmid psPAX2 (a gift from Didier Trono [Addgene plasmid #12260; http://n2t.net/addgene:12260; RRID:Addgene_12260]), and pMD2.G (a gift from Didier Trono [Addgene plasmid #12259; http://n2t.net/addgene:12259; RRID:Addgene_12259]), and added dropwise onto 293T cells. Packaged virus was harvested 24 h after transfection and purified by high speed centrifugation and filtration using 0.45 μ m syringe filters (Fisher, 09-719D). TLBR-3 cells were maintained in RPMI1640 complete media supplemented with 10% FBS and IL2, transfected using titrated virus and polybrene (10 mg/mL), and selected in puromycin. Ten NSG mice per group were injected subcutaneously with 1.0 x 10⁶ cells TLBR-3 cells transduced with CA9 or empty vector in 100 μ L of PBS and tumors were measured as described.

Serum and tumor CA9 determination in BIA-ALCL xenograft models

Eight NSG mice per group were injected subcutaneously with 10.0×10^6 cells TLBR-1, -2, or -3 cells in 100 µL of PBS. When each tumor reached 1,000 mm³ the corresponding mouse was euthanized and blood was obtained by cardiac puncture. Blood was similarly obtained from a fourth group of mice injected with PBS only. Blood samples were immediately stored in serum separator tubes (BD Microtainer), allowed to clot for 1 h, and centrifuged to collect serum. Subcutaneous tumors were harvested from tumor-bearing mice immediately after euthanasia. Tumor tissue was pulverized and lysed for 15 min on ice using RNase-free disposable pellet pestles (Fischer Scientific) in 120 µL of RIPA buffer containing HALT, PMSF, and Roche cOmpleteTM Mini protease inhibitors. Samples were centrifuged at 13,000 rpm for 15 min at 4°C. Supernatant protein concentrations were determined using a DC protein assay and adjusted to a concentration of 1 µg/µL for CA9 measurement by ELISA.

CA9 ELISA

Human serum (n=1), plasma (n=3), and seroma (n=13) samples were collected at MD Anderson Cancer Center between May 2014 and March 2019 as previously published.³ Ten seromas were involved by BIA-ALCL based on standard pathologic criteria.⁴ Control seromas were collected from 3 patients, 2 with benign seromas and 1 from an uninvolved seroma contralateral to BIA-ALCL. CA9 concentrations in seroma, serum, plasma, cell culture supernatant, and tumor lysate samples were measured using a commercially available solid-phase ELISA kit (Quantikine, R&D Systems, Minneapolis, MN) following the manufacturer's instructions, diluting samples as needed to allow interpretation within the dynamic range of the reference standard curve. Briefly, 100 µL of appropriately diluted sample was added to each well and the plate was shaken for 2 h at room temperature. Wells were washed, incubated with 200 μ L of biotinylated anti-CA9 conjugate for 2 h, washed again, and then incubated with 200 µL of streptavidin-horseradish peroxidase and stabilized chromogen solution for 0.5 h. Finally, 50 µL of stop solution (2N H₂SO₄) was added and absorbance was measured at 450 nm on a photometric plate reader. Concentrations were interpolated from triplicate measurements using a second-order polynomial quadratic model.

Statistical analysis

Statistical analyses were performed using JMP Pro 14 (SAS Institute), GraphPad Prism 7, or in the R statistical environment. Statistical tests are as indicated. P-values <0.05 were considered statistically significant.

Supplemental Tables

Supplemental Table 1. Top gene sets positively associated with BIA-ALCLs

NAME	NES	Nom	FDR
		P-val	q-val
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	2.963	0.000	0.000
HALLMARK_HYPOXIA	2.727	0.000	0.000
HALLMARK_TNFA_SIGNALING_VIA_NFKB	2.530	0.000	0.000
REACTOME_COLLAGEN_FORMATION	2.358	0.000	0.000
KEGG_ECM_RECEPTOR_INTERACTION	2.140	0.000	0.001
REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION	2.139	0.000	0.001
$REACTOME_A_TETRASACCHARIDE_LINKER_SEQUENCE_IS_REQUIRED_FOR_GAG_SYNTHESIS$	2.072	0.000	0.002
BIOCARTA_CDMAC_PATHWAY	2.052	0.000	0.002
HALLMARK_ANGIOGENESIS	2.022	0.000	0.004
REACTOME_ACTIVATION_OF_THE_AP1_FAMILY_OF_TRANSCRIPTION_FACTORS	1.959	0.000	0.010

Supplemental Table 2. Top gene sets associated with hypoxia vs. normoxia in TLBR-2 cells

NAME	NFS	Nom	FDR
	1125	P-val	q-val
Up-regulated Gene Sets			
HALLMARK_HYPOXIA	2.514	0.000	0.000
HALLMARK_GLYCOLYSIS	2.145	0.000	0.000
REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION	2.090	0.000	0.000
REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX	2.023	0.000	0.000
KEGG_NITROGEN_METABOLISM	1.950	0.000	0.002
REACTOME_METABOLISM_OF_CARBOHYDRATES	1.918	0.000	0.005
REACTOME_GLUCOSE_METABOLISM	1.920	0.000	0.005
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE	1.894	0.000	0.010
HALLMARK_IL2_STAT5_SIGNALING	1.870	0.000	0.016
HALLMARK_KRAS_SIGNALING_UP	1.856	0.000	0.019
KEGG_JAK_STAT_SIGNALING_PATHWAY	1.846	0.000	0.022
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	1.842	0.000	0.022

HALLMARK_MYC_TARGETS_V2	-1.937	0.000	0.001
Down-regulated Gene Sets			
KEGG_STARCH_AND_SUCROSE_METABOLISM	1.799	0.002	0.042
REACTOME_GLUCONEOGENESIS	1.823	0.000	0.031
KEGG_PENTOSE_PHOSPHATE_PATHWAY	1.819	0.002	0.030
REACTOME_GLYCOLYSIS	1.823	0.002	0.029

Supplemental Table 3. Top gene sets associated with CA9 siRNA vs. control siRNA in TLBR-2 cells

NAME	NEC	Nom	FDR
	NES	P-val	q-val
Up-regulated Gene Sets			
None passing FDR≤0.05			
Down-regulated Gene Sets			
HALLMARK_MYC_TARGETS_V1	-2.460	0.000	0.000
REACTOME_S_PHASE	-2.236	0.000	0.000
HALLMARK_MYC_TARGETS_V2	-2.228	0.000	0.000
REACTOME_ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX	-2.143	0.000	0.000
REACTOME_ORC1_REMOVAL_FROM_CHROMATIN	-2.174	0.000	0.000
REACTOME_DNA_REPLICATION	-2.182	0.000	0.000
HALLMARK_UNFOLDED_PROTEIN_RESPONSE	-2.191	0.000	0.000
REACTOME_M_G1_TRANSITION	-2.135	0.000	0.000
REACTOME_SYNTHESIS_OF_DNA	-2.198	0.000	0.000
REACTOME_G1_S_TRANSITION	-2.129	0.000	0.000

REACTOME_MITOTIC_M_M_G1_PHASES	-2.126	0.000	0.000
REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS	-2.098	0.000	0.001
REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE	-2.105	0.000	0.001
KEGG_PROTEASOME	-2.095	0.000	0.001
HALLMARK_E2F_TARGETS	-2.071	0.000	0.001
REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G	-2.069	0.000	0.001
REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC	-2.062	0.000	0.001
REACTOME_MRNA_PROCESSING	-2.072	0.000	0.001
REACTOME_MITOTIC_G1_G1_S_PHASES	-2.062	0.000	0.001
REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1	-2.063	0.000	0.001
REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX	-2.063	0.000	0.001
REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA	-2.074	0.000	0.001
REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_	-2.075	0.000	0.001
REACTOME_APC_C_CDH1_MEDIATED_DEGRADATION_OF_CDC20_AND_OTHER_APC_C_CDH1_	2 075	0.000	0.001
TARGETED_PROTEINS_IN_LATE_MITOSIS_EARLY_G1	-2.075		0.001
HALLMARK_MTORC1_SIGNALING	-2.075	0.000	0.001
REACTOME_SCFSKP2_MEDIATED_DEGRADATION_OF_P27_P21	-2.054	0.000	0.001
REACTOME_CROSS_PRESENTATION_OF_SOLUBLE_EXOGENOUS_ANTIGENS_ENDOSOMES	-2.052	0.000	0.001

REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_PROTEINS	-2.077	0.000	0.001
REACTOME_ER_PHAGOSOME_PATHWAY	-2.079	0.000	0.001
KEGG_ASTHMA	-2.045	0.000	0.001
HALLMARK_INFLAMMATORY_RESPONSE	-2.035	0.000	0.002
REACTOME_METABOLISM_OF_RNA	-2.037	0.000	0.002
REACTOME_ACTIVATION_OF_NF_KAPPAB_IN_B_CELLS	-2.029	0.000	0.002
REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6	-2.039	0.000	0.002
REACTOME_DESTABILIZATION_OF_MRNA_BY_AUF1_HNRNP_D0	-2.030	0.000	0.002
REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC_C	-2.041	0.000	0.002
REACTOME_TRNA_AMINOACYLATION	-2.003	0.000	0.002
REACTOME_CELL_CYCLE_CHECKPOINTS	-2.000	0.000	0.002
REACTOME_MRNA_SPLICING	-2.001	0.000	0.002
REACTOME_CELL_CYCLE_MITOTIC	-1.978	0.000	0.004
REACTOME_REGULATION_OF_APOPTOSIS	-1.970	0.000	0.005
BIOCARTA_CD40_PATHWAY	-1.972	0.000	0.005
REACTOME_MITOCHONDRIAL_PROTEIN_IMPORT	-1.941	0.000	0.009
REACTOME_SIGNALING_BY_WNT	-1.941	0.000	0.009
KEGG SPLICEOSOME	-1.941	0.000	0.009

REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_RICH_	1.042	0.002	0.000
ELEMENTS	-1.942	0.002	0.009
BIOCARTA_PROTEASOME_PATHWAY	-1.937	0.002	0.009
HALLMARK_G2M_CHECKPOINT	-1.935	0.000	0.009
REACTOME_ANTIGEN_PROCESSING_CROSS_PRESENTATION	-1.931	0.000	0.010
HALLMARK_CHOLESTEROL_HOMEOSTASIS	-1.917	0.002	0.012
REACTOME_PROTEIN_FOLDING	-1.914	0.000	0.012
REACTOME_PREFOLDIN_MEDIATED_TRANSFER_OF_SUBSTRATE_TO_CCT_TRIC	-1.909	0.002	0.013
REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION	-1.905	0.004	0.013
HALLMARK_UV_RESPONSE_UP	-1.902	0.000	0.014
REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RESPONSE	-1.896	0.002	0.015
REACTOME_METABOLISM_OF_MRNA	-1.897	0.000	0.015
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS	-1.891	0.002	0.016
REACTOME_P53_INDEPENDENT_G1_S_DNA_DAMAGE_CHECKPOINT	-1.887	0.004	0.016
REACTOME_HIV_LIFE_CYCLE	-1.881	0.002	0.017
REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE	-1.874	0.000	0.018
REACTOME_DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR	-1.876	0.000	0.018
REACTOME_TRANSPORT_OF_MATURE_TRANSCRIPT_TO_CYTOPLASM	-1.875	0.004	0.018

HALLMARK_ALLOGRAFT_REJECTION	-1.876	0.000	0.018
REACTOME_CHOLESTEROL_BIOSYNTHESIS	-1.866	0.006	0.020
REACTOME_METABOLISM_OF_NON_CODING_RNA	-1.862	0.002	0.020
REACTOME_AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1	-1.864	0.002	0.020
KEGG_ALLOGRAFT_REJECTION	-1.858	0.010	0.021
BIOCARTA_TNFR2_PATHWAY	-1.851	0.000	0.022
REACTOME_MRNA_SPLICING_MINOR_PATHWAY	-1.848	0.004	0.023
REACTOME_INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS	-1.844	0.002	0.024
KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY	-1.838	0.013	0.025
REACTOME_PERK_REGULATED_GENE_EXPRESSION	-1.836	0.004	0.025
KEGG_JAK_STAT_SIGNALING_PATHWAY	-1.817	0.002	0.030
KEGG_PYRIMIDINE_METABOLISM	-1.815	0.002	0.031
REACTOME_TRANSCRIPTION	-1.807	0.000	0.031
KEGG_DNA_REPLICATION	-1.808	0.008	0.031
REACTOME_RNA_POL_II_TRANSCRIPTION	-1.808	0.000	0.032
REACTOME_FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC	-1.809	0.008	0.032
REACTOME_EXTENSION_OF_TELOMERES	-1.800	0.012	0.032
HALLMARK_TNFA_SIGNALING_VIA_NFKB	-1.801	0.000	0.032

BIOCARTA_RANMS_PATHWAY	-1.795	0.000	0.033
REACTOME_DNA_STRAND_ELONGATION	-1.795	0.010	0.033
REACTOME_CLEAVAGE_OF_GROWING_TRANSCRIPT_IN_THE_TERMINATION_REGION_	-1.788	0.014	0.035
KEGG_VIRAL_MYOCARDITIS	-1.779	0.006	0.037
REACTOME_APOPTOSIS	-1.775	0.002	0.038
BIOCARTA_RACCYCD_PATHWAY	-1.776	0.004	0.038
REACTOME_INFLUENZA_LIFE_CYCLE	-1.769	0.000	0.039
BIOCARTA_TH1TH2_PATHWAY	-1.759	0.006	0.042
KEGG_AUTOIMMUNE_THYROID_DISEASE	-1.760	0.015	0.042
BIOCARTA_41BB_PATHWAY	-1.760	0.000	0.042
REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX	-1.747	0.016	0.045
KEGG_STEROID_BIOSYNTHESIS	-1.747	0.013	0.045
REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES	-1.739	0.002	0.048

Supplemental Figures

Supplemental Figure 1. BIA-ALCLs show significantly higher expression of hypoxia-related genes such as *VEGFA*, *CA9*, and *SLC2A3* encoding GLUT3 than non-BIA-ALCLs. No differential expression of *SLC2A1* encoding GLUT1 is observed. See also Figure 1, main manuscript. ***P<0.001; n.s., not significant.

Supplemental Figure 2. Effect of CA9 overexpression in vitro. (A) Western blot showing CA9 expression in TLBR-3 cells stably transduced with CA9 lentivirus or control vector under hypoxic conditions. (B) Relative growth of TLBR-3 cells stably transduced with CA9 lentivirus or control vector (MTS assay).

Supplemental Figure 3. Serum and plasma measurements of CA9 concentration in a limited number of samples from patients with BIA-ALCL.

Supplemental Figure 4. Subcutaneous TLBR-1, -2, and -3 tumors were grown in NSG mice to a tumor volume of 1000 mm³. Animals were euthanized and tumor tissue CA9 concentrations were measured by ELISA. See also Figure 6C. **, P<0.01; ***, P<0.001 (Mann-Whitney test).

Supplemental Figure 5. Gene expression data were derived from RNA sequencing of TLBR-1, -2, and -3 cell lines at normoxic baseline. Genes from the HALLMARK HYPOXIA gene set with \log_2 fold-change (FC) values ≥ 1 in either TLBR-2 or TLBR-3 compared to TLBR-1 are shown.

Supplemental Figure 6. Genes reported as significantly down- or up-regulated comparing BIA-ALCL to systemic ALCL in Di Napoli et al⁵ were evaluated for fold-change differences in expression in the present study comparing BIA-ALCL to ALCLs of triple-negative genetic subtype. Means and standard deviations are shown.

Supplemental References

1. Lechner MG, Lade S, Liebertz DJ, et al. Breast implant-associated, ALK-negative, T-cell, anaplastic, large-cell lymphoma: establishment and characterization of a model cell line (TLBR-1) for this newly emerging clinical entity. Cancer. 2011;117(7):1478-1489.

2. Lechner MG, Megiel C, Church CH, et al. Survival signals and targets for therapy in breast implant-associated ALK--anaplastic large cell lymphoma. Clin Cancer Res. 2012;18(17):4549-4559.

3. Hanson SE, Hassid VJ, Branch-Brooks C, et al. Validation of a CD30 Enzyme-Linked Immunosorbant Assay for the Rapid Detection of Breast Implant-Associated Anaplastic Large Cell Lymphoma. Aesthet Surg J. 2019;Feb 21. pii: sjy327. doi: 10.1093/asj/sjy327. [Epub ahead of print](

4. Feldman AL, Harris NL, Stein H, et al. Breast implant-associated anaplastic large cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th ed. Lyon: International Agency for Research on Cancer, 2017:421-422.

5. Di Napoli A, De Cecco L, Piccaluga PP, et al. Transcriptional analysis distinguishes breast implant-associated anaplastic large cell lymphoma from other peripheral T-cell lymphomas. Mod Pathol. 2019;32(2):216-230.