Whole exome sequencing reveals *NOTCH1* mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target Hugo Larose, ^{1,2} Nina Prokoph, ^{1,2} Jamie D. Matthews, ¹ Michaela Schlederer, ³ Sandra Högler, ⁴ Ali F. Alsulami, ⁵ Stephen P. Ducray, ^{1,2} Edem Nuglozeh, ⁶ Mohammad Feroze Fazaludeen, ⁷ Ahmed Elmouna, ⁶ Monica Ceccon, ^{2,8} Luca Mologni, ^{2,8} Carlo Gambacorti-Passerini, ^{2,8} Gerald Hoefler, ⁹ Cosimo Lobello, ^{2,10} Sarka Pospisilova, ^{2,10,11} Andrea Janikova, ^{2,11} Wilhelm Woessmann, ^{2,12} Christine Damm-Welk, ^{2,12} Martin Zimmermann, ¹³ Alina Fedorova, ¹⁴ Andrea Malone, ¹⁵ Owen Smith, ¹⁵ Mariusz Wasik, ^{2,16} Giorgio Inghirami, ¹⁷ Laurence Lamant, ¹⁸ Tom L. Blundell, ⁵ Wolfram Klapper, ¹⁹ Olaf Merkel, ^{2,3} G. A. Amos Burke, ²⁰ Shahid Mian, ⁶ Ibraheem Ashankyty, ²¹ Lukas Kenner^{2,3,22} and Suzanne D. Turner^{1,2,10} ¹Department of Pathology, University of Cambridge, Cambridge, UK; ²European Research Initiative for ALK Related Malignancies (ERIA; www.ERIALCL.net); 3Department of Pathology, Medical University of Vienna, Vienna, Austria; 4Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK; 6Molecular Diagnostics and Personalised Therapeutics Unit, Colleges of Medicine and Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia; 7Neuroinflammation Research Group, Department of Neurobiology, A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland; 8University of Milano-Bicocca, Monza, Italy; 9Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; ¹⁰Center of Molecular Medicine, CEITEC, Masaryk University, Brno, Czech Republic; ¹¹Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Czech Republic; ¹²University Hospital Hamburg-Eppendorf, Pediatric Hematology and Oncology, Hamburg, Germany; 13 Department of Pediatric Hematology/Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany; 14Belarusian Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus; ¹⁵Our Lady's Children's Hospital, Crumlin, Ireland; ¹⁶Perelman School of Medicine, Philadelphia, PA, USA: ¹⁷Department of Pathology and Laboratory Medicine, Cornell University, New York, NY USA: ¹⁸Institut Universitaire du Cancer Toulouse, Oncopole et Université Paul-Sabatier, Toulouse, France; 19 Department of Pathology, Hematopathology Section, UKSH Campus Kiel, Kiel, Germany; 20 Department of Paediatric Oncology, Addenbrooke's Hospital, Cambridge, UK; 21 Department of Medical Technology Laboratory, College of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia and ²²Ludwig-Boltzmann Institute for Cancer Research, Vienna, Austria © 2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.238766 Received: September 19, 2019. Accepted: April 9, 2020. Pre-published: April 23, 2020. Correspondence: SUZANNE D. TURNER - sdt36@cam.ac.uk # **Supplemental Material** | Supplemental Methods | |--| | RNA Extraction and RT-qPCR | | Sanger Sequencing | | Western Blot | | Modelling Molecular Structure and Predicting the Impact of Mutations | | Bioinformatics Analysis | | Gene Set Enrichment Analysis | | ChIP-qPCR | | Generation of Crizotinib Resistant ALCL Cell Lines | | ChIP-Seq | | Microarray Data Analysis | | Compounds, Cell Lines and Plasmids | | Cellular Proliferation and Apoptosis | | Site-Directed Mutagenesis | | Lentiviral Production and Transduction | | | | Sunnlemental Figures | # **Supplemental Figures** **Supplementary Figure 1.** Schematic representation of patient cohorts for which WES data were generated and analysed. **Supplementary Figure 2.** Further details regarding WES bioinformatic analysis. **Supplementary Figure 3.** Modelling of the NOTCH1-JAG1 interaction. **Supplementary Figure 4.** ChIP-seq demonstrating binding of STAT3 at the *notch1* promoter region. Supplementary Figure 5. Changes in gene expression upon GSI treatment in T-ALL. **Supplementary Figure 6.** Proliferation of cells lines when treating with GSI 1. **Supplemental Figure 7.** Quality Controls for bioinformatic processing. ## **Supplemental Tables** **Supplementary Table S1:** Characteristics of the patient tumour samples obtained from the Children's Cancer and Leukaemia Group (CCLG) tissue bank for which WES was conducted or whose WES data was downloaded from the Sequence Read Archive (SRP044708). **Supplementary Table S2:** Characteristics of the 78 patient samples that were employed to validate the presence of Notch1 variants in a larger patient population. **Supplementary Table S3:** Characteristics of the 89 patient tissues that were stained for NOTCH1 expression on the tissue microarray, from which clinical data allowed computation of the 10-year EFS. **Supplementary Table S4:** WES details for the three different patient sample cohorts, including sample names and coverage detail. The Childrens' Cancer and Leukaemia Group (CCLG), is a UK-based charity and tissue bank. **Supplementary Table S5:** Detailed list of antibodies used in this study. Supplementary Table S6: Detailed list of variants found in at least 10% of the WES cohort. **Supplementary Table S7 (Excel file):** Details of copy number variations detected in more than 1 patient. Sheet 1: Copy number altered autosomal regions detected in patient samples. Sheet 2: Genes involved in recurrent copy number gains. Sheet 3: Genes involved in recurrent copy number losses. Supplementary Table S8: Details of the mutations found in the NOTCH1 pathway by GSEA. **Supplementary Table S9:** Clinical data pertaining to the validation cohort. **Supplementary Table S10:** Detailed list of oligos used in this study. **Supplementary Table S11:** Cell line description. **Supplementary Table S12:** Detailed list of plasmids used in this study. ### **Supplemental Methods** ### RNA Extraction and RT-qPCR RNA was extracted using a standard Phenol/Chloroform protocol using TRI reagent (Sigma-Aldrich) before DNA degradation with TURBO DNAse (Thermo Fisher Scientific), following which 2 µg of total RNA was reverse transcribed into cDNA using SuperScript III Reverse Transcriptase (ThermoFisher Scientific). SYBR-Green qPCR analysis was then performed using the QuantStudio™ 6 Flex Real-Time PCR System in accordance with the manufacturer's instructions. ### **Sanger Sequencing** PCR was used to amplify the region of interest (for oligo sequences see Supplementary Table S10) after which primer dimers were removed using ExoSAP-IT (Thermo Scientific), fragments of interest were labelled using the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Scientific) and excess removed using DynaBeads (Thermo Scientific), all according to the manufacturer's instructions. Finally, samples were sequenced using an ABI3730 Sequencer (48 capillaries) and analysed using SeqScanner 2 software. Samples were sequenced in duplicates when variant validation was not immediately evident. ### **Western Blot** Cells were lysed in Pierce RIPA buffer (Thermo Scientific) supplemented with Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific). Laemmli buffer with a 5% final concentration of 2-mercaptoethanol was added to the samples, which were then boiled and proteins separated by TGX 10% Acrylamide Gel (Bio-Rad, Hercules, California, US). Proteins were transferred to a 0.45 µm PVDF membrane (Immobilon, Burlington, Massachusetts, US) using the BioRad Trans-Blot Turbo system in 1X Transfer Buffer (Bio-Rad) for 7 minutes at 25 V and 1.3 A. Membranes were then incubated in 5% BSA (Acros Organics, Hampton, New Hampshire, US) in TBST before exposing to the indicated antibodies (Supplementary Table S5) diluted in 3% BSA in TBST and finally visualised with HRP substrate (Millipore) using an LAS4000 imager (Fujifilm, Minato, Japan). # **Modelling Molecular Structure and Predicting the Impact of Mutations** Multiple templates from the Protein Data Bank were selected for the extracellular (PDB IDs: 4XL1, 4XBM, 5MWB, 4D90) and intracellular domains (PDB IDs: 1YMP, 1OT8) of NOTCH1 using FUGUE¹. The model was derived using MODELLER, which was used to predict the structure of the mutant protein. The same process was used to build the JAG1 model (PDB ID: 2VJ2). SDM², DynaMut³ and mCSM⁴ were used to predict the impact of mutations on NOTCH1 stability and NOTCH1 -ligand interaction. ### **Bioinformatics Analysis** Paired-end sequencing data from 7 previously analysed ALK+ ALCL samples (with matched peripheral blood) were retrieved from the Sequence Read Archive (SRP044708)⁵. Reads from these and the 18 de novo sequenced samples were first analysed using FastQC for quality control. Reads were trimmed to remove nucleotide calls with a Quality score inferior to 30. Reads with a length of less than 50 nt were removed. The Burrows-Wheeler Alignment algorithm ('bwa mem' version 0.7.12-5) was used to align reads to the reference sequence of the human genome (version hg38), which was also indexed using the Burrows-Wheeler alignment tool using default algorithm settings. Aligned files were then sorted and indexed (SAMtools v1.4), after which duplicate reads were removed and reads around known InDel loci were realigned (using Picard's 'MarkDuplicates', 'RealignerTargetCreator' and 'IndelRealigner' v2.5.0), again using default algorithm settings. The Coverage of the ensuing files were computed, and is displayed in Supplementary Table S4. SNVs (Single-Nucleotide Variants) were called using CaVEMan⁶ (version 1.9.5) and InDels (Insertions and Deletions) using Pindel⁷ (version 0.2.5b8). InDels on all chromosomes were called, and the same reference genome as above was used. A configuration file containing the
required data (sample type and insert size) is required, as detailed in the software manual. All files were called in parallel to increase call accuracy. With respect to CaVEMan, samples were called (where possible) against their peripheral blood counterparts to screen out germline variants. CaVEMan requires the same reference genome, along with a reference file containing regions of the human genome to ignore - a file was compiled using all the intergenic regions as determined by the University of California Santa Cruz (USCS) Genomics Institute. Output files of CaVEMan and Pindel were concatenated into a single file. Variants were annotated using Annovar's⁸ 'table_annovar.pl' function (both SNVs and InDels), against the human genome hg38 build as a reference. The variants were annotated against the refGene (build 77), Cosmic (build 78), AVSNP (build 147) and dbSNP (build 148) databases. Variants were also annotated against a number of variant prediction databases: SIFT9, Polyphen10, LRT11, MutationTaster¹², MutationAssessor¹³, FATHMM¹⁴, PROVEAN¹⁵, MetaSVM¹⁶, MetaLR¹⁶, CADD¹⁷, dbSNP, 1000Genome (phase 3 release), ExAc and Clinvar. Variants annotated as part of an intronic, intergenic, a UTR or immediately upstream or downstream of a gene were filtered out. Synonymous SNVs were also filtered out. Highly variable genes with low likelihood of pathogenicity were also screened out at this stage, using published literature¹⁸. Variants contained in any of the 11 matched peripheral blood samples were filtered out from all samples. Variants identified as present in the population at a frequency of >0.1% as determined by either dbSNP or the 1000 Genome project were also filtered out. Finally, variants were screened based on pathogenicity, using annotated variant effect prediction scores. Variants predicted to be damaging by both MetaSVM and MetaLR were retained, while those predicted to be tolerated were filtered out. For variants not annotated by MetaSVM/MetaLR, custom scores combining 8 Variant Effect Prediction software (SIFT, Polyphen, LRT, MutationTaster, MutationAssessor, FATHMM, PROVEAN, CADD) were derived: scores from each software were translated to a 0-1 scale and averaged out, following which variants with scores in the ten most damaging percentiles were retained. To exclude batch effects, the number of post-filtering somatic variants per patient was analysed (looking at the sequencing cohort to which they pertain (i.e. ALCL99 samples, CCLG tissue bank or the published dataset⁵), so the differences between samples was independent of these variables (Figure S7A). Similarly, the proportion of variant type was independent of the sequencing cohort (Figure S7B). Copy-number variation was studied using CNVkit 0.94¹⁹. # **Gene Set Enrichment Analysis** All genes which were mutated in at least two of the 25 patients were included in Gene Set Enrichment Analysis. Two different software programmes were used; DAVID²⁰ for protein domains, and Reactome²¹ for pathway analysis. Reactome analysis combined 5 different databases: IPA (Qiagen), PantherDB²², KEGG²³ and Reactome's own database. Analysis of protein domains using DAVID employed four different databases, GO^{24} , Seq-Feat (National Center for Biotechnology Information, US), SMART²⁵ and InterPro²⁶. The number of databases in which each pathway or domain was found to be enriched was then displayed along with p-values and the size of the network using ggplot2 in R. ## ChIP-qPCR ChIP-qPCR analysis for NOTCH1 and IRF4 was performed on 1 x 107 ALCL cells per sample using an anti-STAT3 or anti-GFP antibody (Supplementary Table S5). Following treatment with 1000 nM crizotinib or DMSO for 3 hrs in growth medium, 1×10^7 cells were fixed with 0.75% formaldehyde for 15 mins with orbital shaking at room temperature. Subsequently, glycine was added to a final concentration of 125 nM and incubated for 5 mins at room temperature. Next, cells were washed twice with cold PBS, collected by centrifugation and flash frozen in dry ice/isopropanol before storage at -80°C until use. Cell pellets were lysed in 650 µL ChIP lysis buffer (50 mM HEPES-KOH pH7.5, 140 mM NaCL, 1 mM EDTA pH8, 1% Triton X-100, 0.1% Sodium Deoxycholate, 0.1% SDS) supplemented with complete™ Mini EDTA-free Protease Inhibitor Cocktail (Roche, Basel, Switzerland) per 2 x 10⁷ cells, followed by sonication for a total of 10 mins with 30 sec pulses on, followed by 30 sec off. Immunoprecipitation reactions were performed overnight with 3 μg STAT3 or GFP antibodies at 4 °C. Next, antibodies and chromatin were captured for 2 hrs at 4 °C using 50 µL of Protein G Dynabeads (Thermo Scientific) per sample. Beads were first washed three times with low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCL pH 8.0, 150 mM NaCL), followed by three washes with high salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 500 mM NaCL), two washes with LiCl wash buffer (0.25 M LiCl, 1% NP-40, 1% Sodium Deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.0) and two final washes with TE buffer (10 mM Tris pH 8.0, 1 mM EDTA). DNA was eluted with 200 μL elution buffer (1% SDS, 100mM NaHCO₃), RNA was digested using 2 µL RNase A (10 mg/mL, Roche) at 37 °C for 30 mins, before cross-links were reversed at 65 °C for 2 hrs with 2 μL proteinase K (20 mg/mL, Thermo Scientific). De-crosslinked DNA was purified with a Zymo DNA Clean and Concentrator-5 kit according to the manufacturer's instructions (Zymo research, Cambridge, UK). ChIP and input DNA were analyzed with SYBR-Green qPCR analysis performed using a QuantStudio[™] 6 Flex Real-Time PCR System in accordance with the manufacturer's protocol using qPCR primers as shown in Table S10. ### **Generation of Crizotinib Resistant ALCL Cell Lines** Crizotinib resistant Karpas-299, SUP-M2, SUDHL-1 and DEL cell lines were established as described previously²⁷. Briefly, ALCL cells were seeded at approximately 0.5×10^6 cells/ml before Crizotinib was added at a concentration of 50 nM, which was replaced every 48-72 hrs. After every second passage, the concentration of Crizotinib was increased in half-log intervals. The maximum concentrations of Crizotinib reached for Karpas-299, SUP-M2, DEL and SU-DHL1 cell lines were: 0.6μ M, 0.3μ M, 0.2μ M and 0.1μ M respectively. # ChIP-Seq BED files were downloaded from the GSE archive (accession GSE117164²⁸ for STAT3 ChIP-seq, GSE104261²⁹ and GSE29600³⁰ for NOTCH1 and NOTCH3 respectively). Files were sorted using BEDTools ("sort"), then converted into BEDGraph using BEDTools ('genomecov'), and then into BigWig track files using UCSC's "bedgraphToBigWig". The genome browser tracks were visualized in IGV v2.3.92. ### Microarray data analysis Microarray files were collected from the GSE archive (accession GSE5827 31 , GSE104261 29 and GSE29600 30) and analysed using NCBI's GEO2R online pipeline 32 , by creating a group for samples treated with the vehicle control, and another for samples treated with GSI. The top 250 hits (according to adjusted p-values) were then extracted from GEO2R; hits present in at least two of the three datasets were retained for display on a heatmap. Normalized, absolute, microarray expression data of ALK+ ALCL (n=64), ALK- ALCL (n=30) and reactive lymph nodes (n=12) for NOTCH1, MYC and DTX1 was downloaded from the GSE archive (GSE6338³³, GSE14879³⁴, GSE19069⁵, GSE58445³⁵ and GSE78513³⁶). Data were used to correlate mRNA expression of NOTCH1 with MYC, and NOTCH1 with DTX1, calculated by Pearson Correlation (using PRISM GraphPad 8). ### **Compounds, Cell Lines and Plasmids** The following compounds were used: GSI-1 (Abcam, Cambridge, UK); PF-03084014 (Sigma-Aldrich, St-Louis, Missouri, US), Crizotinib (Sigma-Aldrich), all dissolved in DMSO, and Ionomycin (Sigma-Aldrich) dissolved in water. HEK293FT were cultured in DMEM/10% FBS/1% Pen-strep. Karpas-299, SU-DHL1, SUP-M2 and DEL cell lines were obtained from the DSMZ, Braunschwieg, Germany; FEPD were provided by Annarosa Del Mistro, University of Padua, Italy; Mac2A from Olaf Merkel, Medical University Vienna, Austria. These cell lines were cultured in RPMI 1640/10% FBS/1% Pen-Strep. OP9-DL1 cells (provided by Alison Michie, Glasgow) were cultured in α -MEM/20% FBS. All cell lines were incubated at 37 °C/5% CO₂, were certified mycoplasma free on a quarterly basis and are detailed in Supplementary Table S11. Details of all plasmid vectors used in the study are provided in Supplementary Table S12. ### **Cellular Proliferation and Apoptosis** Cell proliferation was measured by MTT (Sigma Aldrich) or RealTime-Glo (Promega, Madison, Wisconsin, US) assays according to the manufacturer's instructions. Using a SpectraMax i3 plate reader, absorbance at 570 nm for MTT assays and luminescence for RealTime-Glo were read. Apoptosis was assessed following incubation of 500,000 cells with 4 μ L of an APC-conjugated Annexin V antibody (Biolegend, San Diego, California, US) for 45 mins at room temperature and/or Propidium lodide (1 μ g/mL) (Sigma-Aldrich) followed by flow cytometry on a FACSCalibur (BD Bioscience). All flow cytometry data were analysed with FlowJo (FlowJo, LLC). To assess apoptosis, cells were gated to filter out cell debris (FSC/SSC) and to analyse only single cells (SSC-Height/SSC-Area). ### **Site-Directed Mutagenesis** Plasmids were amplified in a reaction mix consisting of 1X Pfu buffer, 100ng plasmid, 0.5 μ M of each primer (Supplementary Table S9), 500 μ M dNTPs and 5U Pfu Taq polymerase, supplemented with 2.5% DMSO at 92°C for 30 secs before 16 cycles of 92°C for 30 secs, 55°C for 1 min and 68°C for 25 mins. The parental plasmids were digested by incubation for one hour at 37°C with 10U Dpnl. The product (2 μ L) was then transformed into XL-10 Gold competent bacteria (Agilent, Santa Clara, California, USA) before plasmid purification and Sanger sequencing to verify the presence of the desired
variant. # **Lentiviral Production, Transductions and shRNA Silencing** HEK293FT cells were seeded at 50% confluency 1 day before transfection in a T25 flask with 2.7 μg of the plasmid of interest, 1.5 μg pMD2.G (Addgene), 2.4 μg psPAX2 (Addgene) and 19.2 μL TransIT-293 (MirusBio, Madison, Wisconsin, USA) pre-mixed in Opti-MEM (Thermo Scientific, Waltham, Massachusetts, USA). Supernatant was collected 54 hrs later and overlaid onto the cells to be transduced, following which, after 24 hrs incubation, the appropriate antibiotic was added for 7 days (Supplementary Table S12). With respect to shRNA silencing, ALCL cell lines were transduced with shRNA constructs (Supplementary Table S12) and cells were then selected using the relevant antibiotic. Following 96 hrs of selection, RNA was extracted to verify gene silencing, further to which antibiotic selection was terminated and cells were cultured for downstream applications. The shRNA targeting STAT3 has been described and characterized previously²⁸. A SU-DHL1 cell line and SUP-M2-derived cell line (also called 'TS') expressing a doxycycline-inducible NPM-ALK-targeting shRNA construct have been described and characterized previously³⁷. ### **Method References** - 1. Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 2001;310(1):243–57. - 2. Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL. SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017;45(W1):229–235. - 3. Rodrigues CH, Pires DE, Ascher DB. DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018;46(W1):350–355. - 4. Pires DE V, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 2014;30(3):335–42. - 5. Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27(4):516–532. - 6. Turinsky AL, Fanea E, Trinh Q, et al. CAVEman: Standardized anatomical context for biomedical data mapping. Anat. Sci. Educ. 2008;1(1):10–18. - 7. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–2871. - 8. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):164. - 9. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat. Protoc. 2016;11(1):1–9. - 10. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30(17):3894–900. - 11. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19(9):1553–1561. - 12. Stenson PD, Mort M, Ball E V, et al. The Human Gene Mutation Database: 2008 update. Genome Med. 2009;1(1):13. - 13. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39(17):118. - 14. Shihab HA, Gough J, Cooper DN, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013;34(1):57–65. - 15. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS One. 2012;7(10):e46688. - 16. Dong C, Wei P, Jian X, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 2015;24(8):2125–37. - 17. Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014;46(3):310–5. - 18. Shyr C, Tarailo-Graovac M, Gottlieb M, et al. FLAGS, frequently mutated genes in public exomes. BMC Med. Genomics. 2014;7(1):64. - 19. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLOS Comput. Biol. 2016;12(4):e1004873. - 20. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4(1):44–57. - 21. Fabregat A, Jupe S, Matthews L, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–D655. - 22. Mi H, Huang X, Muruganujan A, et al. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45(D1):183–189. - 23. Goto S, Bono H, Ogata H, et al. Organizing and computing metabolic pathway data in terms of binary relations. Pacific Symp. Biocomput. 1997;175–86. - 24. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):330–338. - 25. Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46(1):493–496. - 26. Mitchell AL, Attwood TK, Babbitt PC, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47(D1):351–360. - 27. Ceccon M, Mologni L, Bisson W, Scapozza L, Gambacorti-Passerini C. Crizotinib-Resistant NPM-ALK Mutants Confer Differential Sensitivity to Unrelated Alk Inhibitors. Mol. Cancer Res. 2013;11(2):122–132. - 28. Menotti M, Ambrogio C, Cheong T-C, et al. Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat. Med. 2019;25(1):130–140. - 29. Choi SH, Severson E, Pear WS, et al. The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia. PLoS One. 2017;12(10):e0185762. - 30. Wang H, Zou J, Zhao B, et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl. Acad. Sci. 2011;108(36):14908–13. - 31. Sanchez-Martin M, Ambesi-Impiombato A, Qin Y, et al. Synergistic antileukemic therapies in NOTCH1-induced T-ALL. Proc. Natl. Acad. Sci. 2017;114(8):2006–2011. - 32. Wilhite SE, Barrett T. Strategies to Explore Functional Genomics Data Sets in NCBI's GEO Database. Methods Mol. Biol. 2012;802:41–53. - 33. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J. Clin. Invest. 2007;117(3):823–34. - 34. Eckerle S, Brune V, Döring C, et al. Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukaemia. 2009;23(11):2129–38. - 35. Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–23. - 36. Pomari E, Basso G, Bresolin S, et al. NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma. Leukemia. 2017;31(2):498–501. - 37. Piva R, Chiarle R, Manazza AD, et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood. 2006;107(2):689–97. - 38. DuBridge RB, Tang P, Hsia HC, et al. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 1987;7(1):379–87. - 39. Fischer P, Nacheva E, Mason DY, et al. A Ki-1 (CD30)-positive human cell line (Karpas 299) established from a high-grade non-Hodgkin's lymphoma, showing a 2;5 translocation and rearrangement of the T-cell receptor beta-chain gene. Blood. 1988;72(1):234–40. - 40. Epstein AL, Levy R, Kim H, et al. Biology of the human malignant lymphomas. IV. Functional characterization of ten diffuse histiocytic lymphoma cell lines. Cancer. 1978;42(5):2379–91. - 41. Dutil J, Chen Z, Monteiro AN, Teer JK, Eschrich SA. An Interactive Resource to Probe Genetic Diversity and Estimated Ancestry in Cancer Cell Lines. Cancer Res. 2019;79(7):1263–1273. - 42. Barbey S, Gogusev J, Mouly H, et al. DEL cell line: a "malignant histiocytosis" CD30+ t(5;6)(q35;p21) cell line. Int. J. cancer. 1990;45(3):546–53. - 43. Davis TH, Morton CC, Miller-Cassman R, Balk SP, Kadin ME. Hodgkin's disease, lymphomatoid papulosis, and cutaneous T-cell lymphoma derived from a common T-cell clone. N. Engl. J. Med. 1992;326(17):1115–22. - 44. del Mistro A, Leszl A, Bertorelle R, et al. A CD30-positive T cell line established from an aggressive anaplastic large cell lymphoma, originally diagnosed as Hodgkin's disease. Leukemia. 1994;8(7):1214–9. - 45. Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science. 1994;265(5175):1098–101. # **Supplemental Figures** **Total: 78 Patient samples** Supplementary Figure 1. Schematic representation of patient cohorts for which whole exome sequencing data were generated and analysed. Supplementary Figure 2. Further details regarding WES bioinformatic analysis. (A) Autosome-wide heatmap of log2 copy number segments in patient samples. (B) Distribution of variant type, averaged for germline samples (n=11) and somatic samples (n=25). (C) Prevalence of each of the 96 variant types for representative patient sample S57; these were then used to derive the mutational signature, as displayed for patient sample S57 (D). (E) Nodular interaction plot showing connections between variants. The plot was designed using Reactome. Arrows indicate activating interactions, dotted lines indicate hypothesised interactions, lines ending with a perpendicular bar indicate inhibition. Supplementary Figure 3. Modelling of the NOTCH1-JAG1 interaction. Sanger chromatogram of a selected sequence of
NOTCH1 showing mutations T311P (A) and T349P (B). (C) Schematic representation of the domains of NOTCH1 and JAG1, detailing which domains were modelled from scratch ('Model'), and which were solved structures available on the PDB ('PDB') (PDB IDs: 4XL1, 4XBM, 5MWB, 4D90, 1YMP, 1OT8). (D) Interaction of full-length NOTCH1 (orange) bound to its receptor Jag1 (purple), also modelled in full-length. The interaction between JAG1 and NOTCH1 is enlarged for easier visualisation, with an additional magnification to clearly show NOTCH1 amino acids T311 and T349. (E) MTT assay of HEK293 cells transduced with an Empty Vector (EV), or the Wild-type (WT), T349P or T311P Notch1 mutants, co-cultured with wild-type or DLL1-expressing OP9 cells. Foldchange expression of HES1 (F) or HEY1 (G) over empty-vector control as assessed by qPCR in HEK293FT cells expressing the wild-type or mutant NOTCH1 proteins (normalized to GAPDH and PPIA; *p<0.05; **p<0.01; n=3). HEK293 cells expressing either an EV, WT or mutated NOTCH1 were transfected with siRNA to DLL1 or a control, scrambled siRNA (H) fold change expression of DLL1 over scrambled siRNA was assessed by qPCR (normalized to GAPDH and PPIA (**p<0.01; n=3); and (I) fold change proliferation over EV was assessed by MTT assay (*p<0.05; **p<0.01; ***p<0.001; n=3). (J) Kaplan-Meier Overall and Event-Free Survival plots of patients in our validation cohort for whom we hold at least 5-years of follow-up clinical data, comparing patients that are wild-type (WT), T349P and/or T311P-mutated for NOTCH1, comparing all patients; paediatric patients (18 years and under), adult patients (19 years and above), ALK+ ALCL and ALK- ALCL patients. p-value determined using the logrank test. Supplementary Figure 4. ChIP-seq showing binding of STAT3 to the NOTCH1 promoter region. (A) Fold-change expression of the indicated genes over non-targeting control shRNA transduced cells (normalized to GAPDH) in the FEPD cell line 48 hours after transduction with control non-targeting (NT) shRNA, or one of two shRNAs targeting STAT3 as determined by qPCR (***p<0.001; n=3). All bar plots display the mean of biological replicates and error bars represent standard deviations; the bar plots are colour-coded as indicated in the Figure. (B) Binding of STAT3 to promoter regions of NOTCH1 in JB6 cells treated with a vehicle control (middle track) or Crizotinib (lower track); the upper track shows the input, data obtained by analysing previously published data²⁸. Supplementary Figure 5. Changes in gene expression upon GSI treatment in T-ALL. (A) Fold-change expression of the indicated genes over non-targeting control shRNA transduced cells (normalized to GAPDH) in the ALK- ALCL cell line FEPD, 48 hours after transduction with control non-targeting (NT) shRNA, or one of two shRNA targeting NOTCH1 as determined by qPCR (NS: Not Significant; *p<0.05; **p<0.01; ***p<0.001; n=3). All bar plots display the mean of biological replicates and error bars represent standard deviations; the bar plots are colour-coded as indicated in the Figure. (B) Proliferation of the ALK- ALCL cell line FEPD over the non-targeting shRNA control, determined using an MTT assay, 48 hours after transduction with control non-targeting (NT) shRNA, or one of two shRNAs targeting NOTCH1 (***p<0.001; n=3). (C) Analysis of microarray data from three separate publications of the T-ALL cell line CUTLL-1, representing the fold-change in expression of the top 250 target genes (assessed by adjusted p-values) in the presence of GSI (over a vehicle control); analysing previously published data²⁹⁻³¹. (D) Western Blot for MYC, intracellular NOTCH1 (ICN) and a loading control (TUBULIN), in DEL cell lines transfected either with non-Targeting (NT) or NOTCH1-targeting (sh1, sh2) shRNA-expression constructs. Only the relevant sections of the whole blot are displayed, the contrast was modified on the whole image to improve legibility. Pearson correlation of MYC or DTX1 and NOTCH1 mRNA expression in ALK+ ALCL (E, F; n=64), ALK- ALCL (G, H; n=30) and Reactive Lymph Nodes (I, J; n=12), including the r-score, p-value, linear regression line (in black) and 95% confidence interval (in orange), using published microarray data. Supplementary Figure 6. Proliferation of cell lines when treating with GSI 1. (A) Representative FACS plots for cells stained for Annexin V and PI when treated either with vehicle control or 1 μ M GSI-I for 48 hrs. (B) BLISS matrix showing the combination index on treating the indicated ALK+ ALCL cell lines with Crizotinib and GSI-1 for 72 hrs (using a range of concentrations of 25-100 nM for Crizotinib, and 100 nM-1 μ M GSI-1). A combination index of <1 indicates synergy between drugs, 1 indicates additive effects, >1 indicates antagonistic effects (n=3). (C) Representative FACS plots of cells stained for Annexin V and PI when treated either with vehicle control, 40 nM Crizotinib, 2 μ M PF-03084014 or a combination of PF-03084014 and Crizotinib for 48 hours. Proliferation over vehicle control of wild-type and Crizotinib-resistant DEL (D), SU-DHL1 (E) and SUP-M2 (F) cells when treated with increasing concentrations of GSI 1, as measured by MTT assay (n=3; CR= Crizotinib Resistant, WT=Wild-type). (G) ALCL patient tissue, taken at presentation, were stained for cleaved NOTCH1 and classified according to expression levels: strong, moderate, weak or negative cleaved NOTCH1 staining for which representative examples are shown. **Supplemental Figure 7. Quality Controls for bioinformatic processing. (A)** Number of mutations per patient, colour-coded to reflect the three sequencing cohorts. **(B)** Distribution of variant types for each patient, separating out the three sequencing cohorts: the samples obtained from an online repository ('Crescenzo *et al.*'), and the two cohorts of patient samples sequenced for this publication (see Figure S1). | Characteristic | Subgroup | Number | Fraction of total | |------------------|----------------------------|--------|-------------------| | | Male | 8 | 32% | | Gender | Female | 10 | 40% | | | Unknown | 7 | 28% | | | 0-15 | 16 | 64% | | Age at diagnosis | 16-25 | 3 | 12% | | | 26-40 | 1 | 4% | | | >40 | 5 | 20% | | ALK Status | + | 25 | 100% | | ALK Status | • | 0 | 0% | | Matched blood | Yes | 11 | 44% | | iviatched blood | No | 14 | 56% | | | 5-year EFS known | 18 | 72% | | Follow-up known? | 5-year OS known | 17 | 68% | | | No | 7 | 28% | | Source | CCLG | 18 | 72% | | Source | Crescenzo et al; SRP044708 | 7 | 28% | **Supplementary Table 1**: Characteristics of the patient tumour samples obtained from the Children's Cancer and Leukaemia Group (CCLG) tissue bank for which WES was conducted or whose WES data was downloaded from the Sequence Read Archive (SRP044708). | Characteristic | Subgroup | Number | Fraction of total | |------------------|------------------|--------|-------------------| | | Male | 12 | 15.4% | | Gender | Female | 15 | 19.2% | | | Unknown | 51 | 65.4% | | | 0-15 | 26 | 33.3% | | Ago at diagnosis | 16-25 | 8 | 10.3% | | Age at diagnosis | 26-40 | 3 | 3.8% | | | >40 | 24 | 30.8% | | | Unknown | 17 | 21.8% | | ALK status | + | 55 | 70.5% | | ALK Status | • | 23 | 29.5% | | Matched blood | Yes | 12 | 15.4% | | Matched blood | No | 66 | 84.6% | | | 5-year EFS known | 61 | 78.2% | | Follow-up known? | 5-year OS known | 46 | 59.0% | | | No | 17 | 21.8% | | | UK | 30 | 38.5% | | | France | 19 | 24.4% | | Source | Czech Republic | 10 | 12.8% | | Source | Giessen | 6 | 7.7% | | | Ukraine | 8 | 10.3% | | | Graz | 5 | 6.4% | **Supplementary Table S2:** Characteristics of the 78 patient samples that were employed to validate the presence of NOTCH1 variants in a larger patient population. | Characteristic | Subgroup | Number | Fraction of total | |------------------------------------|---|--------|-------------------| | Canadan | Male | 65 | 73.0% | | Gender | Female | 24 | 27.0% | | 0 | <10 | 33 | 37.1% | | Age at diagnosis | 11+ | 56 | 62.9% | | ALK Status | + | 89 | 100.0% | | 011 | Yes | 1 | 1.1% | | Central nervous system involvement | No | 84 | 94.4% | | involvement | Unknown | 4 | 4.5% | | Bone marrow involvement | Yes | 6 | 6.7% | | Bone marrow involvement | No | 83 | 93.3% | | | NHL-BFM 90 | 25 | 28.1% | | Clinical Study | NHL-BFM 95 | 23 | 25.8% | | | ALCL99 | 41 | 46.1% | | | Stage I | 9 | 10.1% | | Staging at diagnosis | Stage II | 17 | 19.1% | | Staging at diagnosis | Stage III | 58 | 65.2% | | | Stage IV | 5 | 5.6% | | | Relapse/Progress | 29 | 32.6% | | | Toxic Death | 3 | 3.4% | | Events | Complete Cytogenic Response | 19 | 21.3% | | | Lost to Follow-up in Complete
Cytogenic Response | 38 | 42.7% | **Supplementary Table S3:** Characteristics of the 89 patient tissues that were stained for NOTCH1 expression on the tissue microarray, from which clinical data allowed computation of the 10-year EFS. | Course | Library Prep | Sequencing | Matched blood | Sample | Coverage (x read | |------------------|------------------|------------------------|---------------|--------|------------------| | Source | Kit | machine | available | ID | depth) | | | | | | S26 | 187.02 | | | | | | S28 | 156.00 | | SRP0447 | SureSelect | Illumina HiSeq
2000 | | S57 | 228.53 | | 08 | 50 Mb All | | Yes | S67 | 223.40 | | 08 | Exon kit | | | S71 | 241.77 | | | | | | S75 | 210.48 | | | | | | S90 | 92.04 | | CCLC | Navtara | | No | S18 | 284.79 | | CCLG
tissue | Nextera | Illumina HiCoa | Yes | S23 | 163.38 | | bank | Rapid
Capture | Illumina HiSeq
2500 | Yes | S28n | 252.91 | | cohort 1 | Exome | | Yes | S31 | 172.06 | | COHOICI | LXOITIE | | Yes | S32 | 187.01 | | | | | | S1 | 176.72 | | | | | | S2 | 57.18 | | 201.0 | | | | S3 | 156.00 | | CCLG - | | | | S4 | 59.72 | | tissue | Nantana | | | S5 | 149.94 | | bank
cohort 2 | Nextera | | | S7 | 152.39 | | (all from | Rapid | Illumina MiSeq | No | S9 | 73.57 | | ALCL99 | Capture
Exome | | | S11 | 87.26
| | clinical | EXUITIE | | | S12 | 195.30 | | trial) | | | | S13 | 82.51 | | criary | | | | S14 | 176.72 | | | | | | S15 | 44.26 | | | | | | S16 | 176.72 | **Supplementary Table S4:** WES details for the three different patient sample cohorts (all fresh frozen tissues and all ALK+ ALCL), including sample names and coverage detail. CCLG = Childrens' Cancer and Leukaemia Group. | Name | Source | Application | Quantity used | |-----------------------------------|--|--------------|---------------| | PE-conjugated DLL-1 | ThermoFisher Scientific, Cat# 12-
5767-80 | FACS | 0.2 μg | | (Mouse) NOTCH1
(intracellular) | ThermoFisher Scientific, Cat# 14-
5785-81 | Western blot | 1:500 | | (Mouse) NOTCH1 (whole-
length) | Sigma-Aldrich, Cat# N6786 | Western blot | 1:500 | | (Mouse) α-tubulin | Sigma-Aldrich, Cat# T9062 | Western blot | 1:2000 | | HRP anti-rabbit IgG | CiteAb, Cat# P0161 | Western blot | 1:10000 | | HRP anti-mouse IgG | CiteAb, Cat# P0448 | Western blot | 1:10000 | | (Rabbit) phospho-ALK
(Tyr1278) | Cell Signaling Technology, Cat#
6941S | Western blot | 1:1000 | | (Rabbit) ALK | Cell Signaling Technology, Cat#
3633S | Western blot | 1:1000 | | (Rabbit) STAT3 | Cell Signaling Technology, Cat#
4904SS | Western blot | 1:1000 | | STAT3 | Cell Signaling Technology, Cat#
9139 | ChIP | 3 µg | | GFP | Abcam, Cat# ab290 | ChIP | 3 μg | | Human NOTCH1
(intracellular) | ThermoFisher Scientific, Cat# 14-
5785-81 | IF | 1:80 | **Supplementary Table S5:** Detailed list of antibodies used in this study. | Gene | #
Pati
ents | Position | Exon | Ntde
change | AA
change | Type of mutation | COSMIC | dbSNP
ID | Transcri
pt ID | |--------------|-------------------|--------------------|-------------------|------------------|--------------------|-------------------------------|-----------------|---------------------|----------------------| | TYW1 | 23 | chr7:727
28896 | exon
9 | G1118A | W373X | stopgain | | rs301
5858 | NM_00
114544
0 | | DEFB
132 | 20 | chr20:25
7795 | exon
1 | 17-22 del | 6-8 del | nonframes
hift
deletion | COSM1
163662 | rs371
82593
8 | NM_20
7469 | | KCNJ
18 | 20 | chr17:21
703303 | exon
3 | G517A | D173N | nonsynony
mous SNV | | | NM_00
119495
8 | | MIR1-
1HG | 18 | chr20:62
565060 | exon
3 | T80C | V27A | nonsynony
mous SNV | COSM3
758712 | rs606
2251 | NM_17
8463 | | ZNF2
83 | 17 | chr19:43
847015 | whol
e
gene | del
GGAGAT | | frameshift
deletion | COSM1
394324 | rs719
07168 | NM_00
129775
2 | | NRDC | 17 | chr1:518
40392 | exon
2 | 462-464
del | 154-
155
del | nonframes
hift
deletion | COSM1
237693 | rs357
23519 | NM_00
110166
2 | | ZNF7
20 | 16 | chr16:31
759375 | exon
5 | 381 ins A | | frameshift
insertion | | rs344
87972 | NM_00
113091
3 | | PYGL | 16 | chr14:50
911873 | | del T | | splicing
variant | | rs113
56035 | | | MS4A
14 | 15 | chr11:60
397880 | exon
2 | 167-168
del | | frameshift
deletion | COSM1
684267 | rs321
7518 | NM_00
107969
2 | | CLECL
1 | 15 | chr12:97
33111 | exon
1 | 153 ins
ACTTA | | frameshift
insertion | | rs113
22262
1 | NM_00
125375
0 | | MYO
15B | 14 | chr17:75
601463 | exon
14 | A3437G | K1146
R | nonsynony
mous SNV | COSM4
130628 | rs118
71553 | NM_00
130924
2 | | RIC8A | 13 | chr11:20
9895 | exon
3 | 621-623
del | 207-
208
del | nonframes
hift
deletion | COSM1
317342 | rs383
2797 | NM_00
128613
4 | | STK31 | 13 | chr7:237
17543 | exon
4 | G144C | Q48H | nonsynony
mous SNV | COSM3
762594 | rs694
5306 | NM_00
126050
4 | | TAAR
9 | 13 | chr6:132
538470 | exon
1 | A181T | K61X | stopgain | | rs284
2899 | NM_17
5057 | | CCDC
129 | 12 | chr7:316
58299 | exon
15 | 3097 ins
T | | frameshift
insertion | | rs355
89779 | NM_00
125796
8 | | IRF5 | 12 | chr7:128
947298 | exon
6 | 502-531
del | 168-
177
del | nonframes
hift
deletion | COSM5
002496 | rs199
50896
4 | NM_00
109862
7 | | CYP3
A5 | 12 | chr7:996
72916 | | T>C | | splicing
variant | | rs776
746 | | | | | chr7:100 | 01/010 | 292-295 | | frameshift | COSM5 | rs568 | NINA O1 | |-------------|----|--------------------|------------|-------------------|----------------|-------------------------------|-----------------|---------------------|----------------------| | ZNF3 | 11 | 064889 | exon
6 | 292-295
del | | deletion | 001700 | 33874 | NM_01
7715 | | ZNF2
19 | 11 | chr14:21
092594 | exon
3 | 698-703
del | 233-
235del | nonframes
hift
deletion | COSM2
48523 | rs112
78664 | NM_00
110167
2 | | PSPH | 11 | chr7:560
19672 | exon
5 | T203C | L68P | nonsynony
mous SNV | | rs780
67484 | NM_00
4577 | | PSPH | 11 | chr7:560
19681 | exon
5 | G194A | R65H | nonsynony
mous SNV | | rs200
44207
8 | NM_00
4577 | | TYRO
3 | 11 | chr15:41
570603 | | G>T | | splicing
variant | COSM1
478102 | rs200
68435
0 | | | SCRN
3 | 10 | chr2:174
427853 | exon
8 | 1212-
1224 del | | frameshift
deletion | COSM2
53915 | rs145
69907
7 | NM_00
119352
8 | | CDCP
2 | 10 | chr1:541
39645 | exon
4 | 1224 ins
C | | frameshift insertion | | rs360
13100 | NM_20
1546 | | SYT15 | 10 | chr10:46
584599 | exon
6 | G927C | E309D | nonsynony
mous SNV | COSM4
144699 | rs312
7785 | NM_03
1912 | | GXYL
T1 | 10 | chr12:42
087868 | exon
7 | G1148A | C383Y | nonsynony
mous SNV | | rs200
97303
0 | NM_00
109965
0 | | MRO
H5 | 10 | chr8:141
494938 | | C>T | | splicing
variant | | rs657
8193 | | | PTCH
D3 | 9 | chr10:27
413327 | exon
1 | 923 ins G | | frameshift
insertion | | rs112
06712
3 | NM_00
103484
2 | | HOM
EZ | 9 | chr14:23
275618 | exon
2 | 1608-
1610 del | 536_5
37del | nonframes
hift
deletion | COSM9
54652 | rs350
76736 | NM_02
0834 | | POTE
E | 9 | chr2:131
264056 | exon
15 | G2601T | E867D | nonsynony
mous SNV | COSM4
303570 | rs742
4029 | NM_00
108353
8 | | PSPH | 9 | chr7:560
19607 | exon
5 | G268A | G90S | nonsynony
mous SNV | | rs753
95437 | NM_00
4577 | | PDE4
DIP | 9 | chr1:149
005097 | exon
27 | A4075G | K1359
E | nonsynony
mous SNV | COSM4
590058 | rs174
7958 | NM_00
119883
4 | | TRPT 1 | 9 | chr11:64
226062 | | G>C | | splicing
variant | | rs242
9457 | | | TYRO
3 | 8 | chr15:41
570156 | exon
10 | 1382 del | | frameshift deletion | | | NM_00
6293 | | RNPC
3 | 8 | chr1:103
533845 | exon
3 | 347 del | | frameshift
deletion | | rs772
96325
3 | NM_01
7619 | | CELA
1 | 8 | chr12:51
329814 | exon
7 | 628 ins C | | frameshift insertion | | rs178
60363 | NM_00
1971 | | UBE2
N | 8 | chr12:93
411143 | exon
2 | C187G | P63A | nonsynony
mous SNV | | | NM_00
3348 | | | chr12:60 | exon | | | nonsynony | COSM5 | rs617 | NM_00 | |---------|--------------------|-----------|-----------|--------|--------------|--------|------------|-------------| | VWF 8 | 18901 | 28 | C4517T | S1506L | mous SNV | 313831 | 50100 | 0552 | | ACTR | chr2:652 | exon | 07047 | 42641 | nonsynony | | | NM_00 | | 2 8 | 61302 | 7 | C791T | A264V | mous SNV | | | 5722 | | DNAJ _ | chr21:33 | ovon | 947-951 | | frameshift | | rs139 | NM_00 | | C28 7 | 488443 | exon
2 | del | | deletion | | 85226 | 104019 | | C28 | 400443 | | uei | | | | 2 | 2 | | SSPO 7 | chr7:149 | exon | 8748 del | | frameshift | | rs664 | NM_19 | | 3310 / | 806829 | 58 | 6746 GEI | | deletion | | 70151 | 8455 | | CYP4 7 | chr1:468 | exon | 881-882 | | frameshift | | rs321 | NM_00 | | B1 ' | 15075 | 8 | del | | deletion | | 5983 | 0779 | | CHRN _ | chr15:32 | exon | 497-498 | | frameshift | COSM5 | rs374 | NM_00 | | A7 7 | 157674 | 6 | del | | deletion | 002499 | 60373 | 0746 | | , | 137071 | | 40. | | deletion | 002.55 | 4 | | | TME _ | chr10:80 | exon | | | frameshift | | rs113 | NM_00 | | M254 7 | 081665 | 2 | 114 ins A | | insertion | | 17252 | 127037 | | | | | | | | | 6 | 1 | | FSIP2 7 | chr2:185 | exon | 252 ins G | | frameshift | | rs356 | NM_17 | | | 738878 | 1 | | | insertion | | 17283 | 3651 | | ANP3 _ | chr1:150 | exon | 453-458 | 151- | nonframes | COSM4 | | NM_00 | | 2E 7 | 226708 | 4 | del | 153 | hift | 770175 | | 113647 | | | | | | del | deletion | | | 8 | | THAP _ | chr16:67 | exon | 367-369 | 123 | nonframes | COSM1 | rs377 | NM_02 | | 11 7 | 842921 | 1 | del | del | hift | 479007 | 51618 | 0457 | | | | | | | deletion | | 0 | NIN 4 OO | | ACVR 7 | chr2:147 | exon | A C 2 4 C | 1/2071 | nonsynony | COSM1 | rs371 | NM_00 | | 2A / | 918575 | 7 | A621C | K207N | mous SNV | 32653 | 05918
4 | 127858
0 | | | | | | | | | rs139 | U | | RPS3 7 | chr4:151 | exon | A470C | Q157P | nonsynony | COSM3 | 97982 | NM_00 | | Α , | 102986 | 4 | A470C | QIJ/F | mous SNV | 28158 | 8 | 1006 | | | | | | | | | rs200 | | | NOTC 7 | chr9:136 | exon | A1045C | T349P | nonsynony | | 52008 | NM_01 | | H1 ' | 518645 | 6 | 7120130 | 13.3. | mous SNV | | 8 | 7617 | | | | | | | | | rs781 | | | PPFIA 7 | chr19:49 | | T>G | | splicing | COSM1 | 35388 | | | 3 ' | 133149 | | | | variant | 35843 | 8 | | | DTE.: - | chr10:87 | | – | | splicing | | rs710 | | | PTEN 7 | 864104 | | del T | | variant | | 22512 | | | MPRI _ | chr17:17 | | C: - | | splicing | | | | | P 7 | 154305 | | G>T | | variant | | | | | ODE4 | ab ::44 47 | | | | | | mc 2.4.0 | NM_00 | | OR51 6 | chr11:47 | exon | 274 del | | frameshift | | rs346 | 100475 | | F1 0 | 69644 | 1 | | | deletion | | 72924 | 2 | | OP10 | chr12:40 | 0405 | | | frameshift | | rs144 | NM_00 | | OR10 6 | chr12:48
203092 | exon
1 | 200dupT | |
insertion | | 24784 | 100413 | | ADI | 203092 | 1 | | | 111361 (1011 | | 1 | 4 | | ALOX | chr13:30 | exon | 116 ins | | frameshift | | rs369 | NM_00 | | 5AP 6 | 713841 | 1 | GTGT | | insertion | | 63648 | 120440 | | 3/ 11 | , 13041 | - | 3131 | | 11130111011 | | 3 | 6 | | SETB
P1 | 6 | chr18:44
876699 | exon
4 | 675 ins
TCTC | | frameshift
insertion | | | NM_00
113011
0 | |--------------|---|--------------------|------------|-------------------|--------------------|--------------------------------|-----------------|---------------------|----------------------| | PSOR
S1C1 | 6 | chr6:311
38723 | exon
5 | 112 ins C | | frameshift
insertion | | rs138
47498
6 | NM_01
4068 | | ZFYVE
19 | 6 | chr15:40
807701 | exon
1 | 112 ins
GGGGC | | frameshift
insertion | | rs142
73057
4 | NM_00
107726
8 | | FAM2
05C | 6 | chr9:348
93049 | exon
4 | 354-355
CC>G- | | frameshift
substitutio
n | | rs715
06187 | NM_00
130942
6 | | NUCB
2 | 6 | chr11:17
330931 | exon
13 | 1203-
1205 del | 401-
402
del | nonframes
hift
deletion | COSM1
237695 | rs384
2269 | NM_00
5013 | | ATN1 | 6 | chr12:69
36729 | exon
5 | 1462-
1482 del | 488-
494
del | nonframes
hift
deletion | COSM1
476884 | | NM_00
100702
6 | | PLEK
HA6 | 6 | chr1:204
249206 | exon
11 | T1652G | V551G | nonsynony
mous SNV | | rs200
96198
0 | NM_01
4935 | | PLXN
A2 | 6 | chr1:208
098968 | exon
6 | T1609G | C537G | nonsynony
mous SNV | | rs200
69876
5 | NM_02
5179 | | L2HG
DH | 6 | chr14:50
283981 | exon
5 | T593G | V198G | nonsynony
mous SNV | | rs201
69264
5 | NM_02
4884 | | CAPN
5 | 6 | chr11:77
084981 | exon
2 | T95C | F32S | nonsynony
mous SNV | COSM3
986477 | rs201
25654
7 | NM_00
4055 | | RPS1
8 | 6 | chr6:332
76005 | exon
4 | A230G | Y77C | nonsynony
mous SNV | COSM1
131899 | rs769
83876
6 | NM_02
2551 | | ERVV- | 6 | chr19:53
014925 | exon
1 | C835G | P279A | nonsynony
mous SNV | COSM4
132391 | rs140
87626
8 | NM_15
2473 | | PDE4
DIP | 6 | chr1:148
931920 | exon
3 | G339T | Q113H | nonsynony
mous SNV | COSM4
593888 | rs396
1613 | NM_00
100281
0 | | PABP
C1 | 6 | chr8:100
705591 | exon
12 | T1685C | L562S | nonsynony
mous SNV | | rs800
06036 | NM_00
2568 | | WAS | 6 | chrX:486
85604 | exon
3 | A331C | T111P | nonsynony
mous SNV | | | NM_00
0377 | | NPHP
4 | 6 | chr1:587
5102 | | T>A | | splicing
variant | | rs128
7637 | | | SLC7
A13 | 5 | chr8:862
14406 | exon
4 | 1413-
1511 del | | frameshift
deletion | | rs569
93779 | NM_13
8817 | | PDE4
DIP | 5 | chr1:149
010509 | exon
31 | 4994 del | | frameshift
deletion | | | NM_00
119883
4 | | | | <u> </u> | | I | I | I | ı | I | 1 | |--------------|---|--------------------|------------|----------------------|--------------------|-------------------------------|-----------------|---------------------|----------------------| | LFNG | 5 | chr7:251
3247 | exon
2 | 138- 139
ins GATG | | frameshift
insertion | | rs346
37446 | NM_00
116635
5 | | WDR
73 | 5 | chr15:84
643646 | exon
8 | 944-961
del | 315-
321
del | nonframes
hift
deletion | COSM1
375060 | rs112
67906 | NM_03
2856 | | FOXE
1 | 5 | chr9:978
54419 | exon
1 | 505-510
del | 169-
170
del | nonframes
hift
deletion | COSM1
724903 | rs713
69530 | NM_00
4473 | | PAK2 | 5 | chr3:196
782706 | exon
2 | C60G | S20R | nonsynony
mous SNV | COSM1
422033 | rs767
14248 | NM_00
2577 | | TMTC 2 | 5 | chr12:82
857341 | exon
2 | C415G | R139G | nonsynony
mous SNV | COSM1
188560 | rs200
26850
0 | NM_15
2588 | | JAG1 | 5 | chr20:10
645368 | exon
16 | A2101C | T701P | nonsynony
mous SNV | | rs791
76844 | NM_00
0214 | | FRMD
4A | 5 | chr10:13
657338 | exon
22 | A2251C | T751P | nonsynony
mous SNV | | rs199
96844
0 | NM_01
8027 | | KCNJ
18 | 5 | chr17:21
703568 | exon
3 | G782A | R261H | nonsynony
mous SNV | | | NM_00
119495
8 | | TUBB
8 | 5 | chr10:47
467 | exon
4 | C925T | R309C | nonsynony
mous SNV | | rs782
62855
6 | NM_17
7987 | | PANK
3 | 5 | chr5:168
561512 | exon
5 | G817A | G273R | nonsynony
mous SNV | | rs200
31742
6 | NM_02
4594 | | PABP
C1 | 5 | chr8:100
704992 | exon
13 | G1752A | M584I | nonsynony
mous SNV | | rs112
86810
1 | NM_00
2568 | | EIF4E
BP1 | 5 | chr8:380
57147 | exon
2 | C212T | P71L | nonsynony
mous SNV | | | NM_00
4095 | | WAS | 5 | chrX:486
85610 | exon
3 | T337C | F113L | nonsynony
mous SNV | | | NM_00
0377 | | FLNB | 5 | chr3:581
23679 | exon
21 | T3713A | I1238K | nonsynony
mous SNV | | | NM_00
116431
7 | | VPS5
0 | 5 | chr7:932
94638 | | T>G | | splicing
variant | | rs758
93203 | | | BCAP
31 | 5 | chrX:153
724015 | | C>A | | splicing
variant | | rs184
70739
6 | | | TAS2
R19 | 5 | chr12:11
021672 | exon
1 | A900G | X300W | stoploss | | rs794
75879 | NM_17
6888 | | OR6C
76 | 4 | chr12:55
427175 | exon
1 | 922 del | | frameshift
deletion | | rs397
71996
5 | NM_00
100518
3 | | SPAT
A4 | 4 | chr4:176
184859 | exon
6 | 836-839
del | | frameshift deletion | | rs283
81989 | NM_14
4644 | | MSH3 | 4 | chr5:806
54881 | exon
1 | 154-171
del | 52-57
del | nonframes
hift
deletion | COSM3
718906 | rs201
87476
2 | NM_00
2439 | |--------------|---|---------------------|------------|-------------------|--------------------|-------------------------------|-----------------|---------------------|----------------------| | NCL | 4 | chr2:231
460704 | exon
4 | 774-776
del | 258-
259
del | nonframes
hift
deletion | COSM3
736247 | rs139
77735
1 | NM_00
5381 | | TSKS | 4 | chr19:49
746676 | exon
6 | 769-786
del | 257-
262
del | nonframes
hift
deletion | COSM5
056834 | rs550
91696
0 | NM_02
1733 | | NINL | 4 | chr20:25
476414 | exon
17 | 2872-
2877 del | 958-
959
del | nonframes
hift
deletion | COSM1
025361 | rs344
10422 | NM_02
5176 | | CDSN | 4 | chr6:311
17166 | exon
2 | 447-449
del | 149-
150
del | nonframes
hift
deletion | COSM1
077524 | rs341
82778 | NM_00
1264 | | RNH1 | 4 | chr11:50
2130 | exon
2 | 19-33 del | 7-11
del | nonframes
hift
deletion | COSM9
27774 | rs710
22920 | NM_20
3384 | | POTE
E | 4 | chr2:131
263902 | exon
15 | G2447A | R816H | nonsynony
mous SNV | COSM3
836843 | rs115
46936 | NM_00
108353
8 | | POTEI | 4 | chr2:130
462929 | exon
15 | G3115A | V1039
M | nonsynony
mous SNV | | rs485
0284 | NM_00
127740
6 | | MAN
EAL | 4 | chr1:377
96745 | exon
3 | T662G | V221G | nonsynony
mous SNV | COSM4
143887 | rs757
05909 | NM_00
103174
0 | | KCNJ
18 | 4 | chr17:21
703692 | exon
3 | G906T | M302I | nonsynony
mous SNV | | | NM_00
119495
8 | | CHD3 | 4 | chr17:79
05953 | exon
28 | T4499G | V1500
G | nonsynony
mous SNV | COSM4
130771 | rs201
72701
1 | NM_00
100527
1 | | CDK1
1B | 4 | chr1:163
6429 | exon
16 | C1202T | A401V | nonsynony
mous SNV | | rs105
9811 | NM_03
3487 | | FOXD
4L1 | 4 | chr2:113
499719 | exon
1 | A463G | I155V | nonsynony
mous SNV | COSM2
24838 | rs199
84579
2 | NM_01
2184 | | PABP
C3 | 4 | chr13:25
096638 | exon
1 | C440T | T147I | nonsynony
mous SNV | | rs784
32860 | NM_03
0979 | | PABP
C1 | 4 | chr8:100
704954 | exon
13 | T1790C | L597P | nonsynony
mous SNV | | rs781
46983 | NM_00
2568 | | DCAF
13 | 4 | chr8:103
440233 | exon
9 | C1504T | R502C | nonsynony
mous SNV | COSM3
412622 | | NM_01
5420 | | WNT
2B | 4 | chr1:112
516325 | exon
3 | C313T | R105C | nonsynony
mous SNV | | rs762
36909
7 | NM_00
129188
0 | | TMPR
SS13 | 4 | chr11:11
7909838 | exon
7 | G972T | Q324H | nonsynony
mous SNV | | | NM_00
120678
9 | | COQ4 | 4 | chr9:128
325797 | exon
3 | G221A | R74Q | nonsynony
mous SNV | COSM5
021646 | rs227
0203 | NM_00
130594
2 | |-------------|---|--------------------|------------|--------|------------|-----------------------|-----------------|---------------------|----------------------| | RABL
6 | 4 | chr9:136
839820 | exon
13 | G1888A | G630R | nonsynony
mous SNV | | rs147
12472
5 | NM_00
117398
8 | | PCDH
A5 | 4 | chr5:140
822899 | exon
1 | A1124T | D375V | nonsynony
mous SNV | | rs139
24549
6 | NM_01
8908 | | PCDH
GA5 | 4 | chr5:141
365274 | exon
1 | A944G | Y315C | nonsynony
mous SNV | | rs199
51270
8 | NM_01
8918 | | RBSN | 4 | chr3:150
90399 | exon
4 | G289T | G97C | nonsynony
mous SNV | | | NM_00
130237
8 | | RNF1
75 | 4 | chr4:153
715537 | exon
7 | T756G | C252W | nonsynony
mous SNV | | rs142
22430
6 | NM_17
3662 | | EZR | 4 | chr6:158
787182 | exon
3 | C118T | R40W | nonsynony
mous SNV | | rs772
60842
8 | NM_00
3379 | | SLC22
A1 | 4 | chr6:160
122197 | exon
1 | T262C | C88R | nonsynony
mous SNV | COSM3
928207 | rs559
18055 | NM_00
3057 | | SCN7
A | 4 | chr2:166
405764 | exon
25 | G4865A | R1622
Q | nonsynony
mous SNV | | rs188
78193
5 | NM_00
2976 | | ALDH
4A1 | 4 | chr1:188
83153 | exon
7 | G469A | G157S | nonsynony
mous SNV | | rs780
29802
7 | NM_00
116150
4 | | GATA
D2A | 4 | chr19:19
492680 | exon
3 | A502G | S168G | nonsynony
mous SNV | |
rs779
97146
3 | NM_00
130094
6 | | NTHL
1 | 4 | chr16:20
40195 | exon
5 | G753C | W251C | nonsynony
mous SNV | | | NM_00
2528 | | GJC2 | 4 | chr1:228
158846 | exon
2 | C1088T | A363V | nonsynony
mous SNV | | | NM_02
0435 | | CHRN
D | 4 | chr2:232
531450 | exon
6 | C337T | P113S | nonsynony
mous SNV | | rs142
06332
8 | NM_00
131119
5 | | PYGB | 4 | chr20:25
292528 | exon
17 | G2092A | V698M | nonsynony
mous SNV | | rs150
58250
2 | NM_00
2862 | | DMD | 4 | chrX:312
03978 | exon
6 | C586T | R196W | nonsynony
mous SNV | | rs373
44800
2 | NM_00
4015 | | DMD | 4 | chrX:326
99119 | exon
8 | C800T | S267F | nonsynony
mous SNV | | | NM_00
0109 | | SCUB
E3 | 4 | chr6:352
39766 | exon
8 | C841T | R281C | nonsynony
mous SNV | COSM1
265091 | rs201
95255
4 | NM_00
130313
6 | | | | T | | 1 | | <u> </u> | | 75.6 | | |------------|----|--------------------|-----------|---------|---------|-----------------------|--------|---------------------|---------------| | COL9
A2 | 4 | chr1:403
14260 | exon
4 | A194G | K65R | nonsynony
mous SNV | | rs756
63465
9 | NM_00
1852 | | SPTB
N5 | 4 | chr15:41
887281 | exon
6 | G820A | V274I | nonsynony
mous SNV | | rs558
30029 | NM_01
6642 | | CYP4 | | chr1:469 | | | | | | rs626 | NM_00 | | | 4 | 36786 | exon
4 | G388A | G130S | nonsynony | | 21075 | 0778 | | A11 | | 30/60 | 4 | | | mous SNV | | | | | SKOR | 4 | chr18:47 | exon | C211A | D10411 | nonsynony | COSM4 | rs574 | NM_00 | | 2 | 4 | 248873 | 1 | G311A | R104H | mous SNV | 595039 | 68505 | 103780 | | | | | | | | | | 7 | 2 | | 01100 | | chr14:51 | exon | 04.437 | 5.401/ | nonsynony | COSM1 | | NM_00 | | GNG2 | 4 | 966613 | 3 | G142T | D48Y | mous SNV | 629335 | | 124377 | | | | | | | | | | | 4 | | DNAH | 4 | chr3:523 | exon | A3262T | 11088F | nonsynony | | | NM_01 | | 1 | | 53415 | 20 | | | mous SNV | | | 5512 | | ITIH3 | 4 | chr3:527 | exon | T959C | L320P | nonsynony | | | NM_00 | | | • | 99805 | 9 | 13330 | 20201 | mous SNV | | | 2217 | | SOX1 | 4 | chr8:544 | exon | G13C | D5H | nonsynony | | | NM_02 | | 7 | | 58151 | 1 | 0150 | D311 | mous SNV | | | 2454 | | SOX1 | | chr8:544 | exon | | | nonsynony | | rs267 | NM_02 | | 7 | 4 | 59282 | 2 | G532T | G178C | mous SNV | | 60708 | 2454 | | / | | 33202 | | | | IIIOUS SINV | | 2 | 2434 | | TRIM | | chr11:56 | ovon | | | nansynany | COSM4 | | NM_00 | | | 4 | | exon | C769T | R257C | nonsynony | | | 119864 | | 6 | | 11169 | 6 | | | mous SNV | 29249 | | 5 | | DUES | 4 | chr6:636 | exon | T24056 | NATOOT | nonsynony | | | NM_01 | | PHF3 | 4 | 91742 | 4 | T2195C | M732T | mous SNV | | | 5153 | | MAP3 | 4 | chr11:65 | exon | 142606 | 54226 | nonsynony | | | NM_00 | | K11 | 4 | 607491 | 5 | A1268G | E423G | mous SNV | | | 2419 | | CLDN | | -l7 - 727 | | | | | | rs139 | NINA OO | | CLDN | 4 | chr7:737 | exon | C401T | P134L | nonsynony | | 19132 | NM_00 | | 3 | | 69649 | 1 | | | mous SNV | | 8 | 1306 | | GOLG | | | | | | | | rs773 | NM_00 | | A6L1 | 4 | chr15:82 | exon | T1196C | L399P | nonsynony | | 31571 | 116446 | | 0 | | 344664 | 6 | | | mous SNV | | 9 | 5 | | | | | | | | | | | NM_00 | | FNBP | 4 | chr1:935 | exon | G1586C | G529A | nonsynony | | | 102494 | | 1L | | 51055 | 14 | | | mous SNV | | | 8 | | SLC26 | | chr4:989 | exon | | | nonsynony | | | NM_02 | | A1 | 4 | 077 | 3 | T1862A | F621Y | mous SNV | | | 2042 | | | | | | | | | | rs200 | | | ZFP64 | 4 | chr20:52 | | ins AA | | splicing | | 05997 | | | 21101 | • | 164759 | | 1113701 | | variant | | 8 | | | | | | | | | | | rs796 | NM_00 | | MTC | 4 | chr11:47 | exon | G780A | W260X | stopgain | | 09634 | 131723 | | H2 | -7 | 622719 | 11 | G750A | **200X | Stopgain | | 7 | 2 | | | | | | 39 ins | | | | rs368 | | | RETN | 4 | chr3:108 | exon | TAATCCC | L14 ins | stongain | | 49766 | NM_03 | | LB | 7 | 757146 | 1 | C | X | stopgain | | 0 | 2579 | | KCNO | | chr20:63 | avon | | | | | 0 | NINA OO | | KCNQ | 4 | 407011 | exon | C2168A | S723X | stopgain | | | NM_00
4518 | | 2 | | 40/011 | 15 | ĺ | | | | | 4318 | | TYRO | | chr15:41 | exon | 1659- | | frameshift | | | NM_00 | |-------------|---|---------------------|-----------|------------------|--------|------------------------|----------------|----------------|-----------------| | 3 | 3 | 571117 | 13 | 1660 del | | deletion | | | 6293 | | OR5B | | chr11:58 | exon | | | frameshift | | rs200 | NM_00 | | 3 | 3 | 403320 | 1 | 90 del | | deletion | | 79915 | 100546 | | | | +03320 | | | | deletion | | 8 | 9 | | | | chr18:59 | exon | 394-397 | | frameshift | | rs149 | NM_00 | | GRP | 3 | 230436 | 3 | del | | deletion | | 96206 | 101251 | | | | | | | | | | 8 | 2 | | SETB | | chr18:44 | exon | 676-677 | | frameshift | | | NM_00 | | P1 | 3 | 876700 | 4 | del | | deletion | | | 113011 | | 4 D2C | | -b 1 1 F | | 121 124 | | £ | COCN 44 | 001 | 0 | | AP3S | 3 | chr5:115 | exon
2 | 121-124 | | frameshift | COSM1 | rs801 | NM_00
1284 | | 1
PEBP | | 866721
chr8:227 | | del | | deletion
frameshift | 319295 | 18146
rs351 | | | 4 | 3 | 13395 | exon
7 | 659 del | | deletion | | 21552 | NM_14
4962 | | CNTN | | chr9:391 | exon | | | frameshift | | 21332 | NM_03 | | AP3 | 3 | 49858 | 10 | 1597 del | | deletion | | | 3655 | | 7.11.5 | | | | | 1030- | nonframes | | rs773 | | | DSPP | 3 | chr4:876 | exon | 3088- | 1035 | hift | COSM5 | 55733 | NM_01 | | | | 15750 | 5 | 3105 del | del | deletion | 547737 | 0 | 4208 | | | | | | | | nonframes | | rs142 | | | CTBS | 3 | chr1:845 | exon | 92-100 | 31-34 | hift | COSM1 | 53476 | NM_00 | | | | 74316 | 1 | del | del | deletion | 290235 | 2 | 4388 | | E A N 4 1 | | ab r12,11 | oven | 207.405 | 133- | nonframes | COCNAA | rs139 | NM_00 | | FAM1
09A | 3 | chr12:11
1363023 | exon
3 | 397-405
del | 135 | hift | COSM4
30328 | 03286 | 117799 | | USA | | 1303023 | 3 | uei | del | deletion | 30326 | 7 | 7 | | | | chr4:876 | exon | 2729- | 910- | nonframes | COSM4 | rs111 | NM_01 | | DSPP | 3 | 15391 | 5 | 2723
2737 del | 913 | hift | 603772 | 45663 | 4208 | | | | 13331 | 3 | 2737 aci | del | deletion | 003772 | 7 | | | NPIPB | | chr16:28 | exon | 813-815 | 271- | nonframes | COSM5 | rs374 | NM_00 | | 6 | 3 | 343070 | 7 | del | 272 | hift | 215813 | 69258 | 128252 | | | | | | | del | deletion | | 8 | 4 | | TRAK | 2 | chr3:422 | exon | 1842- | 614- | nonframes | COSM3 | rs753 | NM_00 | | 1 | 3 | 10086 | 13 | 1844 del | 615 | hift | 08433 | 44077 | 126560 | | | | | | | del | deletion | | 4270 | 9 | | HRCT | 3 | chr9:359 | exon | 64-66 del | 22 del | nonframes
hift | COSM1 | rs370
60624 | NM_00
103979 | | 1 | 3 | 06351 | 1 | 04-00 dei | ZZ UEI | deletion | 490012 | 6 | 2 | | | | chr3:196 | exon | | | nonsynony | COSM1 | rs780 | NM_00 | | PAK2 | 3 | 803111 | 4 | A383G | K128R | mous SNV | 717568 | 43821 | 2577 | | | | | | | | | , 500 | rs201 | NM_00 | | ZBTB | 3 | chr17:74 | exon | A1010C | Y337S | nonsynony | | 26423 | 112883 | | 4 | - | 65792 | 3 | | | mous SNV | | 8 | 3 | | | | ab.:4:220 | | | | | | rs113 | NM_00 | | AK2 | 3 | chr1:330 | exon
6 | A578T | Y193F | nonsynony | | 71146 | 119919 | | | | 13299 | 0 | | | mous SNV | | 7 | 9 | | KCNJ | | chr17:21 | exon | | | nonsynony | | | NM_00 | | 18 | 3 | 703651 | 3 | G865C | E289Q | nonsynony
mous SNV | | | 119495 | | | | | | | | | | | 8 | | PRSS | 3 | chr9:337 | exon | T26C | F9S | nonsynony | | | NM_00 | | 3 | | 95599 | 1 | | | mous SNV | | | 2771 | | CACN
A1G | 3 | chr17:50
615426 | exon
25 | A4723C | T1575
P | nonsynony
mous SNV | | rs200
82577
5 | NM_19
8376 | |--------------|---|--------------------|------------|--------|------------|-----------------------|-----------------|---------------------|----------------------| | CHRN
B2 | 3 | chr1:154
569495 | exon
2 | T98G | V33G | nonsynony
mous SNV | COSM3
726999 | rs200
72932
8 | NM_00
0748 | | LDLR
AD3 | 3 | chr11:36
227304 | exon
4 | A527C | H176P | nonsynony
mous SNV | COSM1
285901 | rs750
89692
5 | NM_00
130426
3 | | SLIT3 | 3 | chr5:168
685818 | exon
31 | A3445C | T1149
P | nonsynony
mous SNV | | rs201
38639
6 | NM_00
127194
6 | | TFAM | 3 | chr10:58
388704 | exon
4 | T326G | V109G | nonsynony
mous SNV | COSM5
034010 | rs774
18790 | NM_00
127078
2 | | CNTN
AP3 | 3 | chr9:390
78875 | exon
22 | G3488A | G1163
D | nonsynony
mous SNV | | rs751
57819
6 | NM_03
3655 | | RBMX | 3 | chrX:136
875541 | exon
6 | A586G | R196G | nonsynony
mous SNV | | rs139
95433
3 | NM_00
2139 | | PA2G
4 | 3 | chr12:56
106718 | | ins A | | splicing
variant | | rs347
28522 | | | SLC3
A1 | 3 | chr2:443
01129 | | del T | | splicing
variant | | rs611
79824 | | | LRRC
37A3 | 3 | chr17:64
858885 | | ins A | | splicing
variant | | rs540
20713
8 | | | IQCK | 3 | chr16:19
717694 | | G>C | | splicing
variant | | rs478
2272 | | | PIBF1 | 3 | chr13:72
835370 | | ins A | | splicing
variant | | rs200
68394
0 | | | CSF1 | 3 | chr1:109
924191 | | G>T | | splicing
variant | | | | | PKD2
L2 | 3 | chr5:137
936318 | | A>G | | splicing
variant | | | | | MAD
1L1 | 3 | chr7:201
4501 | | C>A | | splicing
variant | | | | | PAIP1 | 3 | chr5:435
38923 | | C>T | | splicing
variant | | | | | DGKZ | 3 | chr11:46
378989 | | A>C | | splicing
variant | | | | | PIGQ | 3 | chr16:58
2881 | | A>T | | splicing
variant | | | | | DOCK
8 | 3 | chr9:463
655 | exon
45 | C5907A | Y1969
X | stopgain | COSM3
982891 | rs795
68455 | NM_00
119045
8 | | NPIPB
15 | 3 | chr16:74
391889 | exon
7 | G1141T | E381X | stopgain | COSM4
592878 | rs375
77669
3 | NM_00
130609
4 | | В | AGE | 2 | chr21:10 | exon | A120C | V40C | stanlass | | NM_18 | |---|-----|---|----------|------|-------|------|----------|--|-------| | | 4 | 3
| 414915 | 2 | A120C | X40C | stoploss | | 1704 | **Supplementary Table S6:** Detailed list of variants found in at least 10% of the WES patient cohort. Ntde = nucleotide, aa = amino acid | Gene | Mutation (Amino Acid change) | Number of patients presenting with mutation | |--------|---|---| | | T311P | 6 | | NOTCH1 | Т349Р | 3 | | NOTCHI | H1190P | 1 | | | G1503S | 1 | | CTBP2 | T731R | 2 | | CIBPZ | G813S | 1 | | TP53 | R141C | 2 | | 1755 | C44F | 1 | | ACTR2 | A264V | 2 | | LFNG | Insertion of 4 nucleotides leading to a frameshift after amino acid 46 | 5 | | JAG1 | T701P | 5 | | NOTCH3 | C864F | 2 | | MAML3 | Deletion of 11 nucleotides leading to a frameshift after amino acid 505 | 2 | | NCSTN | T476M | 2 | | DLL3 | C4553R | 2 | | WNT2B | R105C | 4 | Supplementary Table S8: Details of the mutations detected in the Notch1 pathway by GSEA | | All patients | | Adult patients | | Paediatric
patients | | ALK+ ALCL patients | | ALK- ALCL patients | | |----------------|--------------|------------------------------------|----------------|------------------------------------|------------------------|------------------------------------|--------------------|------------------------------------|--------------------|------------------------------------| | | WT
NOTCH1 | NOTCH1
T349P
and/or
T311P | | #
Patients | n = 57 | n = 11 | n = 13 | n = 3 | n = 27 | n = 5 | n = 45 | n = 8 | n = 12 | n = 3 | | OS
(years) | 4.4 | 3.6 | 4.2 | 1.7 | 4.4 | 2.9 | 4.5 | 4.3 | 4.5 | 1.7 | | EFS
(years) | 2.6 | 2.1 | 4 | 1.7 | 4.2 | 3.2 | 2.3 | 2.2 | 3.6 | 1.7 | | Death
(%) | 25% | 36% | 38% | 67% | 26% | 20% | 18% | 25% | 50% | 67% | | Relapse
(%) | 61% | 55% | 38% | 0% | 52% | 60% | 67% | 75% | 42% | 0% | **Supplemental Table S9: Clinical data pertaining to the validation cohort.** Data is based on 5-years of follow-up. Similarly, the average OS (Overall Survival) and EFS (Event-Free Survival) is based on a maximum of 5 years follow-up. Adult patients are defined as being older than 18 years of age. | Name | Direction | Application | Sequence | |------------|-----------|---------------------------|-----------------------------| | NOTCH1 | Forward | Sanger validation | CTCTGCCTGGCGCTGCTG | | NOTCH1 | Reverse | Sanger validation | GGAAACAACTGCAAGAACGGG | | U6 | Forward | Sanger sequencing | AATGACTATCATATGCTTACCG | | H1_TET | Forward | Sanger sequencing | TCGCTATGTGTTCTGGGAAA | | CMV_F | Forward | Sanger sequencing | CGCAAATGGGCGTAGGCGTG | | SP6 | Forward | Sanger sequencing | CGATTTAGGTGACACTATAG | | NOTCH1 | Forward | qPCR | TACAAGTGCGACTGTGACCC | | NOTCH1 | Reverse | qPCR | ATACACGTGCCCTGGTTCAG | | HEY1 | Forward | qPCR | GTTCGGCTCTAGGTTCCATGT | | HEY1 | Reverse | qPCR | CGTCGGCGCTTCTAATTATTC | | HES1 | Forward | qPCR | TCAACACGACACCGGATAAAC | | HES1 | Reverse | qPCR | GCCGCGAGCTATCTTTCTTCA | | GAPDH | Forward | qPCR | CTGGGCTACACTGAGCACC | | GAPDH | Reverse | qPCR | AAGTGGTCGTTGAGGGCAATG | | PPIA | Forward | qPCR | GCTTTGGGTCCAGGAATG | | PPIA | Reverse | qPCR | AGAAGGAATGATCTGGTGGTTAAG | | DLL1 | Forward | qPCR | GATTCTCCTGATGACCTCGCA | | DLL1 | Reverse | qPCR | TCCGTAGTAGTGTTCGTCACA | | MYC | Forward | qPCR | GGCTCCTGGCAAAAGGTCA | | MYC | Reverse | qPCR | CTGCGTAGTTGTGCTGATGT | | DTX1 | Forward | qPCR | GACGGCCTACGATATGGACAT | | DTX1 | Reverse | qPCR | CCTAGCGATGAGAGGTCGAG | | STAT3 | Forward | qPCR | CAGCAGCTTGACACACGGTA | | STAT3 | Reverse | qPCR | AAACACCAAAGTGGCATGTGA | | NOTCH1_349 | Forward | Site-Directed Mutagenesis | GGTCATGGCAGGGGCGCCGTGGAA | | NOTCH1_349 | Reverse | Site-Directed Mutagenesis | TTCCACGGCGCCCCTGCCATGACC | | NOTCH1_311 | Forward | Site-Directed Mutagenesis | GTGTTGTGGCAGGGCCCGCCGTTCTGG | | NOTCH1_311 | Reverse | Site-Directed Mutagenesis | CCAGAACGGCGGGCCCTGCCACAACAC | | NOTCH1 | Forward | ChIP | ATCAACCTGTTCCTCCCCTG | | NOTCH1 | Reverse | ChIP | TTCCCGACTACAAGCGGACT | | IRF4 | Forward | ChIP | CTCTAAACACCGCGGAGAGG | | IRF4 | Reverse | ChIP | CTTTGCAGAGCGTGTAACGG | | Control | Forward | ChIP | ATTCCACCTTGTCCAGCCCT | | Control | Reverse | ChIP | GGTTTTATCCCTCTCCCCGAC | **Supplementary Table S10:** Detailed list of oligos used in this study. | Cell line | Tissue of origin | Cell of origin | Sex | Karyotype | Species | Growth
Medium | Doubling
time | Growth
Mode | Ref | |---------------|--------------------------|------------------------|--------|-------------------|---------|---------------------------|------------------|----------------|-----| | HEK293FT | Kidney
(foetal) | Epithelial | Female | Hypotriploid | Human | DMEM +
10% FBS | 20 hrs | Adherent | 38 | | Karpas
299 | Lymph node | ALK+ ALCL | Male | Hypodiploid | Human | RPMI
1640 +
10% FBS | 30 hrs | Suspension | 39 | | SU-DHL1 | Lymph node | ALK+ ALCL | Male | Octoploid | Human | RPMI
1640 +
10% FBS | 45 hrs | Suspension | 40 | | SUP-M2 | Lymph node | ALK+ ALCL | Female | Near-
Diploid | Human | RPMI
1640 +
10% FBS | 45 hrs | Suspension | 41 | | DEL | Lymph node | ALK+ ALCL | Male | Hyper-
diploid | Human | RPMI
1640 +
10% FBS | 35 hrs | Suspension | 42 | | MAC2A | Metastatic
lymph node | ALK- ALCL | Male | Near-
Diploid | Human | RPMI
1640 +
10% FBS | 50 hrs | Suspension | 43 | | FEPD | Peripheral
Blood | ALK- ALCL | Female | Unknown | Human | RPMI
1640 +
10% FBS | 50 hrs | Suspension | 44 | | OP9 | Bone
Marrow | Embryonic
stem cell | ? | Unknown | Mouse | α-MEM +
20% FBS | 26 hrs | Adherent | 45 | **Supplementary Table S11:** Cell line description | Plasmid | Reference | Selection
antibiotic | |--|---|-------------------------| | psPAX2 | Addgene; Cat# 12260 | - | | PMD2.G | Addgene; Cat# 12259 | - | | pLJM1-EGFP-NOTCH1 | - | Puromycin | | MISSION® shRNA for NOTCH1 | Sigma-Aldrich, Cat# SHCLNG-NM_017617
(TRCN0000003362, TRCN0000350253,
TRCN0000350254) | Puromycin | | MISSION® shRNA for STAT3 | Sigma-Aldrich, Cat# SHCLNG-NM_003150
(TRCN0000020840, TRCN0000020842) | Puromycin | | pLVTHM vector containing the H1 promoter ALK-shRNA (A5) cassette | Piva et al., 2006 | Puromycin | Supplementary Table S12: Detailed list of plasmids used in this study