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DETAILED METHODS 

 

Platelet aggregometry 

Final aggregation was measured in platelet-rich plasma (PRP) by light transmission 

aggregometry using a PAP-8E turbidometric aggregometer (Bio/Data). Responses to 

arachidonic acid (AA; 1 mmol/L, Sigma, UK), adenosine diphosphate (ADP; 10 μmol/L, 

Chronolog, UK), collagen (0.3–3 μg/mL, Nycomed, Austria), epinephrine (10 μmol/L, 

Labmedics, UK), Ristocetin (1.5 mg/mL, Helena Bioscience, UK), thromboxane (TX) A2 

mimetic U46619 (3 μmol/L, Cayman Chemical) or TRAP-6 amide (25 μmol/L, Bachem, 

Austria) were measured.  

Optimul aggregometry was performed as published previously. Briefly, PRP or PPP were 

placed in the appropriate wells of a half-area 96-well plate containing AA (0.03–1 mmol/L), 

ADP (0.005–40 μmol/L), collagen (0.01–40 μg/mL), epinephrine (0.0004–10 μmol/L), 

ristocetin (0.14–4 mg/mL), U46619 (0.005– 40 μmol/L), TRAP-6 amide (SFLLRN, 0.03–40 

μmol/L) or vehicle. Plates were mixed (1200 rpm, 37°C; BioShake IQ, Q Instruments, 

Germany) for 5 min, and absorbance at 595 nm was measured using a standard absorbance 

microplate reader (Sunrise, Tecan, Switzerland). Platelet aggregation was calculated as 

percentage change in absorbance.  

 

ATP release 

Chrono-Lume reagent (0.2 μmol/L luciferin/luciferase, Chronolog) was added to PRP and 

ADP + ATP secretion was assessed by measuring luminescence in an optical lumi-

aggregometer (560 CA, Chronolog, USA) after stimulation by AA (1 mmol/L), ADP (10 μmol/L), 

collagen (3 μg/mL) or TRAP-6 amide (25 μmol/L). Maximum ATP release was calculated using 

a 2 µmol/L ATP standard and data were analysed using Chart v8.1.12 software 

(ADInstruments, UK). 
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P-selectin expression 

Whole blood was added to wells of a modified Optimul plate with ADP (40 μmol/L), U46619 

(0.5 μmol/L), or a combination of both. After mixing (1200 rpm, 37°C, 5 min), the aggregation 

was halted by the addition of anti-coagulant citrate dextrose solution (ACD; 5 mmol/L glucose, 

6.8 mmol/L trisodium citrate, 3.8 mmol/L citric acid)1. Diluted blood was incubated in the dark 

with APC-conjugated CD61 and PE-conjugated CD62P antibodies (4°C, 30 min). Samples 

then fixed in 1% formalin and flow cytometric analysis (FACSCalibur, BD Biosciences, UK) 

was conducted to determine mean fluorescence intensity (MFI) values for 10,000 CD61-

positive events. 

 

ImageStream®X analysis 

Whole blood was fixed and erythrocytes removed using Lyse/Fix (BD Biosciences). Cell 

interactions were assessed using an ImageStream®X Mark II imaging flow cytometer (Merck 

Millipore, UK) in whole blood stained with anti-CD61-FITC (platelets), anti-CD45-PerCP-Cy5.5 

(leukocytes), anti-CD14-APC (monocytes) and anti-CD66b-Pacific Blue (neutrophils). 

Samples were fixed and diluted in a formalin/phosphate-buffered saline solution containing 

dextrose and bovine serum albumin (BSA). The number of platelet-monocyte and platelet-

neutrophil aggregates were quantified using IDEAS® software (Merck MiIlipore, UK). 

 

Western blotting 

Platelet protein lysates were prepared as described2. Protein concentration was quantified 

with a Bradford analysis and 25 μg of platelet lysates was loaded on a 10% Bis-Tris gel (Bio-

Rad, CA, USA). Protein fractions were resolved by SDS–polyacrylamide gel electrophoresis, 

and blots were incubated with anti-COX-1 antibody (Cell Signaling Technology, The 

Netherlands) and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (clone 

4G5, Fitzgerald Industries International). Membranes were then incubated with horseradish 

peroxidase-conjugated secondary antibody (Dako, Denmark) and chemiluminescent blots 
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were imaged with the ChemiDoc MP imager and the ImageLab software version 4.1 (Bio-Rad) 

was used for image acquisition. 

 

Production of variant W322S and wild type human COX-1 and COX and peroxidase activity 

assays 

Oligos used for site-directed mutagenesis were purchased from Integrated DNA Technologies 

(Coralville, IA, USA).  A pFastBac-1 vector containing the gene for human (hu) COX-1 was 

used to insert six histidine residues at rTEV cleavage site between Ala-24 and Gly-25, which 

is directly after the signal sequence. Subsequently, this construct was used to engineer the 

W322S mutant construct using the QuikChange Mutagenesis kit II (Agilent Technologies). 

Both constructs were sequence verified. Baculovirus generation and expression was carried 

out in sf21 insect cells as previously described3. For purification, the cell pellet from a 2L 

culture of insect cells was resuspended in buffer A (40 mmol/L HEPES, pH 7.4, 250 mmol/L 

sucrose, and 1 mmol/L dithiothreitol), lysed using a Microfluidizer, and clarified by 

centrifugation at 10000 x g for 15 min. The supernatant was layered over buffer B (40 mmol/L 

HEPES, pH 7.4, 1.3 mol/L sucrose, and 1 mmol/L dithiothreitol) at a ratio of 3:1 (v/v) 

supernatant to buffer B and subsequently centrifuged at 140000 x g for 60 min to isolate 

microsomal membranes. Microsomal membrane was resuspended in 50 mmol/L Tris, pH 8.0, 

300 mmol/L NaCl, 10 mmol/L imidazole, 5 mmol/L 2-mercaptoethanol, 15% (v/v) glycerol and 

solubilized by adding dodecyl maltoside (C10M; Affymetrix) to a final concentration of 0.87% 

(w/v). The solubilization mixture was stirred overnight at 4°C, followed by centrifugation at 

140000 x g for 75 min. Ni-NTA affinity chromatography using a HiTrapTM HP Chelating column 

(GE Healthcare) was then utilized to produce purified wild type and W322S huCOX-1 in 25 

mmol/L Tris, pH 8.0, 150 mmol/L NaCl and 0.15% (w/v) C10M for kinetic characterization. 

 

COX activity was measured using a Clark type oxygen electrode as described3. The assays 

were performed at 37°C utilizing cuvettes containing 100 mmol/L Tris, pH 8.0, 1 mmol/L 

phenol, 5 μmol/L Fe3+-protoporphyrin IX, AA (Cayman Chemical) as the substrate. Reactions 
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were initiated via the addition of 20 μg of wild type or W322S huCOX-1 and activity was 

recorded as the maximal rate of oxygen consumption. For inhibition studies, 5 µmol/L wild 

type or W322S was incubated with aspirin (500 µmol/L) before measurement of COX activity 

over 30 min. Peroxidase activity was measured by monitoring the oxidation of guaiacol. Km 

and Vmax values were determined by measuring oxygen uptake using AA (1-100 μmol/L) and 

fitting the data to the Michaelis-Menton equation using GraphPad Prism. All measurements 

were carried out in duplicate±s.d.  

 

Detecting COX-1 protein expression using confocal imaging  

PRP was fixed with paraformaldehyde (4%) in PBS at room temperature for 15 min. Platelets 

were then pelleted, washed with ACD (pH 6.1) and resuspended in BSA (1%). In other 

experiments, the interface between PRP and red blood cells was taken, Lyse/Fix was added 

and leukocytes were isolated by centrifugation (2000 x g, 5 min) before being resuspended in 

saline. Platelets or leukocytes were spotted onto glass coverslips and incubated at 37°C for 

90 min. Coverslips were then rinsed with PBS and blocking buffer (0.2% Triton-X100, 2% 

donkey serum and 1% BSA) was added for 60 min. Following this, platelets were incubated 

with anti-COX-1 (Cell Signaling Technology) and anti-tubulin (Sigma-Aldrich, UK) overnight.  

Leukocytes were incubated with anti-COX-1, anti-DAPI for DNA (ThermoFisher Scientific, UK) 

and anti-LAMP-3 for neutrophils (Hybridoma Bank, USA). After wash with PBS, slides were 

incubated Alexa Fluor® secondary antibodies (ThermoFisher Scientific).  

 

The coverslips were mounted onto glass slides and visualised with oil immersion objectives 

(CFI Plan Apochromat 40X, N.A.1.4, working distance 0.26 mm – 63x for platelets and 40x for 

leukocytes) on a confocal laser scanning microscope (LSM 880 with Airyscan, Zeiss, UK) 

equipped with 5 lasers: diode 405-30 (405 nm), Argon (458/488/514 nm), DPSS 561-10 (561 

nm), HeNe633 (633 nm), Chameleon (680-1080 nm). Acquisition and image processing were 

performed using the ZEN software (Version 2.35spi, Zeiss) and ImageJ (Version 1.51a, 

National Institutes of Health, USA). 
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Spreading 

Washed platelets were resuspended at 2x108/ml and placed onto coverslips coated with 

collagen (100 μg/mL). Adherent platelets were fixed with paraformaldehyde (0.2%) and 

permeabilised with Triton-X100 (0.2%). After washing with PBS, platelet F-actin was stained 

with Alexa Fluor® 488 phalloidin (ThermoFisher Scientific) and mounted onto slides. Slides 

were visualised as above. Platelets were scored by two independent markers as adhered, 

exhibiting filopodia or lamellipodia or as fully spread and expressed as percentage of all 

platelets. 

 

Eicosanomic analysis 

Citrated whole blood was incubated with PBS, collagen (30 μg/mL) or TRAP-6 amide (30 

μmol/L) at 37°C for 30 min and plasma was isolated by centrifugation at 2000 x g (5 min). 

Total eicosanoids in the conditioned plasma and urine were measured by gas 

chromatography–tandem mass spectrometry as previously described4–8.  
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SUPPLEMENTAL FIGURES AND FIGURE LEGENDS 

 

 

 

 

 

Supplementary Figure 1.  Kinetic analysis of (A) wild type and (B) variant W322S COX-1 

and (C) the relative activity in the presence of aspirin (500 µmol/L). COX activity was measured 

using a Clark type oxygen electrode as described in methods. Km and Vmax were determined 

by fitting the data to the Michaelis-Menton equation. All measurements were carried out in 

duplicate and shown as mean±s.d.    
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Supplementary Figure 2. Platelet aggregation measured by the Optimul method in response 

to (A) arachidonic acid (AA; 0.03–1 mmol/L), (B) ADP (0.005–40 μmol/L), (C) collagen (0.01–

40 μg/mL), (D) epinephrine (0.0004–10 μmol/L), (E) ristocetin (0.14–4 mg/mL), (F) U46619 

(0.005–40 μmol/L) and (G) TRAP-6 amide 0.03–40 μmol/L). n = 20 (healthy controls); n = 1 

(proband); n = 2 (homozygous relatives); n = 4 (unaffected relatives). 
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SUPPLEMENTAL TABLES AND SUPPORTING INFORMATION 
 

Table S1. Contribution of PTGS1 to eicosanoid synthesis in whole blood stimulated with 

platelet activators. Total eicosanoid levels in whole blood from healthy controls or from the 

proband lacking PTGS1 stimulated with vehicle (PBS), collagen (30 μg/mL) or TRAP-6 amide 

(30 μmol/L). n=4 (healthy controls), n=1 (proband).  
 

Mediators 
(ng/mL) 

Vehicle 
(PBS) 

Collagen 
(30 μg/mL) 

TRAP-6 amide 
(30 μmol/L) 

Control Proband Control Proband Control Proband 

6ketoPGF1α 0.0 ± 0.1 0.6 0.4 ± 0.0 0.9 0.2 ± 0.0 3.4 
TXB2 3.7 ± 3.7 0.0 47.3 ± 1.6 0.1 41.4 ± 7.1 0.0 
PGE2 0.5 ± 0.4 0.0 24.6 ± 2.7 0.0 15.2 ± 7.3 0.0 
PGD2 1.0 ± 0.6 0.8 22.9 ± 2.3 0.7 14.9 ± 6.4 0.7 
8isoPGF2α 0.0 ± 0.0 0.1 0.5 ± 0.1 0.1 0.3 ± 0.1 0.1 
PGF2α 2.8 ± 0.6 1.2 6.3 ± 0.8 1.3 5.0 ± 1.2 1.2 
12,13-DHOME 2.6 ± 1.7 2.3 2.5 ± 1.6 2.4 3.1 ± 2.2 1.8 
9,10-DHOME 3.7 ± 3.4 7.1 3.3 ± 2.7 7.4 4.3 ± 4.1 7.4 
19,20-DiHDPA 0.5 ± 0.1 1.2 0.5 ± 0.1 1.3 0.6 ± 0.2 1.3 
17,18-DHET 1.5 ± 0.6 3.9 1.3 ± 0.4 4.3 1.6 ± 0.7 4.7 
14,15-DHET 0.2 ± 0.0 0.3 0.2 ± 0.0 0.4 0.3 ± 0.1 0.4 
11,12-DHET 0.2 ± 0.0 0.3 0.2 ± 0.0 0.3 0.2 ± 0.1 0.3 
8,9-DHET 0.1 ± 0.0 0.1 0.1 ± 0.0 0.1 0.1 ± 0.1 0.1 
5,6-DHET 0.1 ± 0.0 0.1 0.1 ± 0.0 0.1 0.2 ± 0.1 0.1 
13-HODE 3.7 ± 3.3 3.3 5.2 ± 2.9 4.5 4.8 ± 3.5 3.7 
9-HODE 4.7 ± 3.7 4.4 13.5 ± 3.8 4.5 9.0 ± 4.1 4.7 
20-HETE 0.2 ± 0.0 0.3 0.3 ± 0.1 0.5 0.2 ± 0.0 0.3 
19-HETE 0.0 ± 0.0 0.0 0.0 ± 0.0 0.0 0.0 ± 0.0 0.0 
15-HETE 0.7 ± 0.5 0.3 18.3 ± 2.1 2.4 9.2 ± 3.0 0.5 
12-HETE 12.8 ± 7.5 3.6 165.1 ± 28.5 232.8 32.2 ± 18.1 18.5 
11-HETE 0.6 ± 0.5 0.1 17.7 ± 2.3 0.8 9.1 ± 2.7 0.2 
5-HETE 0.3 ± 0.1 0.3 0.4 ± 0.1 0.4 0.4 ± 0.1 0.4 
12,13-EpOME 2.8 ± 4.2 1.9 2.4 ± 3.3 1.9 3.6 ± 5.2 1.9 
9,10-EpOME 1.6 ± 1.5 2.1 1.3 ± 1.1 2.1 2.0 ± 1.6 2.1 
19,20-EpDPE 0.2 ± 0.0 0.3 0.2 ± 0.1 0.4 0.2 ± 0.1 0.4 
17,18-EpETE 0.0 ± 0.0 0.0 0.0 ± 0.0 0.0 0.0 ± 0.0 0.0 
14,15-EET 0.1 ± 0.0 0.1 0.2 ± 0.0 0.3 0.2 ± 0.0 0.2 
11,12-EET 0.1 ± 0.0 0.1 0.1 ± 0.0 0.2 0.1 ± 0.0 0.2 
8,9-EET 0.1 ± 0.0 0.1 0.1 ± 0.0 0.2 0.1 ± 0.0 0.2 
5,6-EET 0.0 ± 0.0 0.0 0.0 ± 0.0 0.0 0.0 ± 0.0 0.0 
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