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Supplementary INTRODUCTION – EXTENDED 

 

Over the past decade the application of omics technologies1 and particularly metabolomics2 

to the field of red blood cell (RBC) storage has exponentially expanded our understanding of the 

temporal sequence and mechanisms of the storage lesion. Indeed, while refrigerated storage in the 

blood bank is a logistic necessity to make ~110 million units available for transfusion every year 

worldwide, the process comes at a significant cost in terms of RBC structural3–5 and biochemical 

homeostasis.1 Some of these “storage lesions”6 are inevitable, since refrigeration temperatures 

negatively impact the activity of key enzymes regulating red cell energy7 and ion pump 

homeostasis8,9. Glycolysis is further inhibited by intracellular acidification as a function of lactate 

accumulation, a phenomenon that is observed during storage in all currently licensed storage 

additives, including SAGM 9–12, additive solutions 1 13, 3 14,15, 5 16 and PAGGSM 17,18, and is in 

part counteracted by the adoption of next generation alkaline storage additives.17,19–21 In small 

scale studies, the metabolic lesion has been reproducibly assessed to a quantifiable extent, which 

allowed the definition of metabolic markers of the so-called “metabolic age” of stored RBCs.3,22,23 

These markers are so robust that in prior double-blinded metabolomics studies we could accurately 

predict the storage age of >98.7% of 599 stored RBC samples.24 Despite the consistency of these 

laboratory observations, it is still a matter of debate whether the (metabolic) storage lesion could 

represent an etiological contributor to (or a reliable predictor of) transfusion outcomes in the 

recipient.25 Indeed, storage-induced impairments in the homeostasis of high energy phosphate 

compounds adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG) should negatively 

impact RBC capacity to bind and off-load oxygen upon transfusion.26 Depletion of ATP and DPG 

could represent a concern in massively transfused patients, since the rate at which these compounds 

are replenished within the first 72h upon transfusion may not be sufficient to meet the oxygen 

metabolic demands in severely hypoxic recipients.27,28 Studies in animal models and humans have 

shown that some small molecule metabolites could represent reliable correlates to Food and Drug 

Administration gold standards for stored blood quality, i.e. storage hemolysis17,29 and post-

transfusion recovery30–32. For example, metabolites like hypoxanthine, an ATP-breakdown and 

oxidation product, have been correlated to hemolysis and post-transfusion recoveries in mice and 

humans.17,32,33 Similar correlations have been reported for lipid oxidation products.30 
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Despite the overwhelming evidence from in vitro studies, randomized clinical trials34–37  

have hitherto failed to capture any signal associated with poorer outcomes when comparing 

transfusion of the freshest available units versus the standard of practice. On the other hand, a 

recent analysis of a linked donor and recipient database indicated that transfusion of RBC units 

less than 35 days old was associated with a higher recipient hemoglobin increment as compared to 

transfusion of 35-42 day old RBC units.38 The apparent inconsistencies among the studies on the 

age of blood in the literature could be reconciled by the appreciation of the fact that RBCs, like 

people, do not always age the same.39 In other terms, the molecular age of blood may be a distinct 

parameter from the storage age calculated in days since the time of donation40. Biological 

variability in donors41 and different RBC component processing strategies42 may for example 

impact hemoglobin oxygen saturation across donors/components,43 which in turn affects RBC 

susceptibility to oxidative stress during storage.32,44,45 Small-scale laboratory studies corroborated 

the hypothesis that RBC antioxidant capacity46 and storage-induced susceptibility to oxidative 

stress may indeed be donor-dependent47. This statement holds true when considering some 

categories of routinely accepted donors who are more susceptible to storage-induced oxidative 

stress owing to common enzymopathies. For example, deficiency of glucose 6-phosphate 

dehydrogenase (G6PD) activity affects ~400 million people worldwide, including ~10% of the 

African American donor population in some metropolitan areas.48 These subjects are characterized 

by a decreased capacity to activate the pentose phosphate pathway (PPP) and thus to generate the 

NADPH necessary to reduce oxidized glutathione and NADPH-dependent antioxidant enzymes48. 

RBCs from G6PD deficient donors are characterized by altered energy and redox metabolism49,50, 

a feature that has been preliminarily associated with poorer capacity to circulate upon transfusion 

to sickle cell recipients51 and poorer post-transfusion recoveries in autologous volunteers.52 As 

such, population screening in regions where the prevalence of G6PD deficiency is 3–5% or greater 

(in males) is recommend by the World Health Organization (WHO),53 but no specific screening 

for G6PD activity is routinely in place for blood donors in the United States. 

In the past few years, large scale studies have been designed to focus on the impact of 

donor biology on storage quality and transfusion outcomes. Within the framework of the National 

Heart Lung and Blood Institute (NHLBI, NIH) Recipient Epidemiology and Donor Evaluation 

Study (REDS)-III RBC-Omics study, four blood centers across the United States enrolled ~13,800 

healthy donor volunteers of different ages, sex and ethnicities. Preliminary analyses of the data 
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obtained from this cohort allowed us to conclude that (i) donor sex (and testosterone levels54), age 

and ethnicity impact the hemolytic propensity of stored RBCs55,56; (ii) stored RBC from multiple 

units donated by the same donors have a similar propensity to hemolyze following pro-oxidant or 

osmotic insults;57 and (iii) the storage duration contributes to explain ~13% of the total metabolic 

heterogeneity of stored RBCs, a percentage similar to the impact noted for storage additives in a 

subgroup of recalled donors from the original RBC-Omics cohort.24  

In the light of this background, the continued characterization of the impact of donor 

biology on storability and transfusion outcomes is a critical step towards the establishment of 

personalized transfusion medicine practices. In the present study we sought to expand the 

characterization of the metabolic mechanisms that contribute to explaining donor and storage-

dependencies of hemolysis following oxidative insults. Leveraging the RBC-Omics recalled donor 

population (which enrolled 662  subjects with extremes in hemolytic propensity from a screened 

original cohort of ~13,800 consenting donors), we performed metabolomics analyses on 599 

samples from 250 donors of different ages, sex, ethnicities. We thus correlated metabolic 

measurments to oxidative hemolysis and biological variables like donor sex, age and ethnicity, 

both as a function of or independently of storage duration. 
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Supplementary METHODS – EXTENDED 

 

Sample processing and metabolite extraction:  An isotopically labeled internal standard 

mixture including a mix of 13C15N-labeled amino acid standards (2.5 μM) was prepared in 

methanol. A volume of 100μl of frozen RBC aliquots was mixed with water and the mixture of 

isotopically labeled internal standards (1:1:1, v/v/v). The samples were extracted with methanol 

(final concentration of 80% methanol). After incubation at −20°C for 1 hour, the supernatants were 

separated by centrifugation and stored at −80°C until analysis. Samples were vortexed58  and 

insoluble material pelleted as described.59,60 

Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry metabolomics: 

Analyses were performed using a Vanquish UHPLC coupled online to a Q Exactive mass 

spectrometer (Thermo Fisher, Bremen, Germany).  Samples were analyzed using a 3 minute 

isocratic condition61 or a 5, 9 and 17 min gradient as described.30,60 Solvents were supplemented 

with 0.1% formic acid for positive mode runs and 1 mM ammonium acetate for negative mode 

runs. MS acquisition, data analysis and elaboration was performed as described.60,61 Additional 

analyses, including untargeted analyses and Fish score calculation via MS/MS, were calculated 

against the ChemSpider database with Compound Discoverer 2.0 (Thermo Fisher, Bremen, 

Germany). Graphs and statistical analyses (either t-test or repeated measures ANOVA) were 

prepared with GraphPad Prism 5.0 (GraphPad Software, Inc, La Jolla, CA). 
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Supplementary Figure 1 – Representative MS (top) and annotated MS/MS spectrum (bottom) 

for reduced glutathione (GSH), as quantified through high-throughput, high-resolution UHPLC-

MS. 
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Supplementary Figure 2 – Metabolic changes in purine metabolism and oxidation, carboxylic 

acid and arginine metabolism, as a function of storage additives (AS-1 – left; AS-3 – right). On 

the x axis of each graph, storage day 10, 23 and 42 are represented. Each dot represents an 

independent measurement and colors are proportional to the oxidative hemolysis measurement for 

the same sample (green to red = low to high oxidative hemolysis). 
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Supplementary Figure 3 – Overview of oxidative hemolysis as a function of gender, storage 

additive, age, ethnicity and storage day. In the top row, the first two panels show oxidative 

hemolysis measurements in male (M) vs female (F) donors at any given storage day (leftmost 

panel) or at storage day 10, 23 and 42 (second panel). In the third and fourth panel, a similar 

breakdown is shown for oxidative hemolysis as a function of storage additive (AS-1 vs AS-3) at 

any given storage day (third panel, top row) or at storage day 10, 23 and 42 (fourth panel, top 

row). In the bottom row, oxidative hemolysis measurements are shown for donors younger than 

30 or older than 60 (first panel), for donors of different ages broken down by decade (second 

panel), for different ethnicities (third panel), for ethnic group and donation frequency (last 

panel). 
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Supplementary Figure 4 – Oxidative hemolysis as a function of storage additive (AS-1 vs AS-3 

= red vs blue) (A). Oxidative hemolysis and reduced glutathione (GSH) are higher and lower, 

respectively in RBCs stored in AS-3 at any given storage day (B-D). Similarly, RBCs stored in 

AS-1 have altered glycolysis, lower activation of the pentose phosphate pathway, altered 

methionine and citrulline metabolism (samples are plotted with no distinction of storage days). 
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Supplementary Figure 5 – Oxidative hemolysis as a function of donor ethnicity (A). Oxidative 

hemolysis and reduced glutathione (GSH) are higher and lower, respectively in RBCs from 

Hispanic and African American donors (B-D). Bottom panels provide an overview of glycolysis, 

pentose phosphate pathway, glutathione and methionine homeostasis as a function of donor 

ethnicity (samples are plotted with no distinction of storage days). 
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Supplementary Figure 6 – OmicsNet elaboration of the gene-centric (top) and metabolite-

centric (bottom) network view of the merged top 100 genes and metabolites correlated to 

oxidative hemolysis from the REDS-III Omics study confirms a central role for G6PD and GSH- 

or NADPH-dependent branching pathways (e.g, GPX4 and ALDH1) in mediating energy and 

redox homeostasis. 
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SUPPLEMENTARY TABLE 1 – please refer to the XLS appendix 

 

Untargeted Metabolomics data were correlated to oxidative hemolysis (Spearman’s correlation). 

The top 250 positive (red) and negative correlates (blue) from this analysis are reported in 

Supplementary table 1 

 


