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Supplementary Methods 

Differential gene and transcript expression analysis 

StringTie1 (v1.3.4), an assembler of RNA-Seq alignments into transcripts, was 

used to assemble and quantify transcripts aligned with STAR2, including identifying 

potential novel transcripts. The R package DESeq23 (v1.14.1) was used for expression 

normalization and gene and transcript level differential expression analysis on both the 

StringTie and Salmon results. 

Pathway analysis 

Gene set enrichment analysis was performed using the R package fgsea4 (v1.6.0). 

The stat value that DESeq2 provides for each gene tested for differential expression is 

the ranking value for input into fgsea. The online tool STRING5 database is a collection 

of known and predicted protein-protein interactions and builds a network diagram of 

possible interactions. STRING additionally performs functional enrichment on the network 

and provides a list of statistically significant (adjusted for multiple testing) over-

represented pathways. 

Partitioning samples into groups based on novel splice loci 

QoRTs6 QC metrics reports the number of novel splice loci for each sample. A 

novel splice locus is defined as a previously unannotated splice junction with greater than 

four reads spanning the junction. After ranking the samples by the number of novel 

splicing loci the first group set included the top and bottom 20th and middle 60th percent 

of samples. A second grouping included the top and bottom 5th and middle 90th percent. 
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Comparisons of these groups to important clinical and genomic characteristics of MM was 

evaluated using the chi-square test with significance being p-value < 0.05. 

Survival analysis statistics 

The Kaplan–Meier estimator was used to calculate time-to-event distributions 

using the R survival7 (v2.43-3) and survminer8 (v0.4.3) packages. The logrank test was 

used to test the null hypothesis that there was no difference between the populations in 

the probability of an event (progression or death) at any time point. Univariate and 

multivariate analysis were done using the survivalAnalyisis R package. 

Supplementary Figures 

Supplementary Figure 1: Box plot of the variant allele frequencies of the hotspot 

SF3B1 mutations versus the other non-silent SF3B1 mutations. There was not a 

statistical difference (p-value = 0.2629, n=12) in VAF. Suggesting that the 

alternative splicing we see with the SF3B1 hotspot mutations is not due to a 

difference in VAF. 
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Supplementary Figure 2: SF3B1 expression. A) SF3B1 gene expression was 

not significantly different between the control (n=11) and SF3B1 mutant samples 

(n=5). B) SF3B1 transcript level expression. No significant differences between the 

control and SF3B1 mutant samples in any of the transcripts. 

(ns: p-value>0.05) 
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Supplementary Figure 3: Six genes that were identified by all three differential 

splicing analysis tools, between the control (n=5) and SF3B1 mutated samples 

(n=11). Although they were all found to be significantly differentially spliced they 

all were not significantly differentially expressed at the gene level. 

(ns: p-value>0.05) 
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Supplementary Figure 4: Samples ordered by the number of novel splice loci. Novel 

splice loci are not present in exon annotation and had four or more reads spanning the 

loci. The samples were split into high, middle, and low groups. First at the 20th and 80th 

quantile. Additional analysis was done based on groups split at the 5th and 95th quantile. 
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Supplementary Figure 5: Boxplots of the number of novel splice loci that had four 

or more reads grouped by translocation. A statistical comparison for each group 

was performed against the group with no translocation (n=602). We see that t(4;14) 

was the only subgroup that had significant lower number of novel splicing. The 

t(11;14) and t(6;14) were both had significant higher number of novel splicing. A 

set of pooled normal was included and we can see that all MM groups had 

significantly increased levels of novel splicing versus the normal samples. 

(ns: p>0.05, *: p≤0.05, ***: p≤0.001) 
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Supplementary Figure 6: Kaplan Meier curves in samples with an t(11;14) in 

regards to high, medium, and low novel splicing  patient samples (A) progression 

free survival (B) overall survival (low: n=14, medium: n=61, high: n=37). 
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Supplementary Figure 7: Features associated with outcome in the t(4;14) subgroup. Univariate and multivariate Cox 

regression analysis in regards to PFS and OS. The Univariate analysis included the following covariates: number of driver 

mutations (0 to 4, 5 to 9 and greater than 10 mutations), ISS stage (I, II and III), novel splice site group (high and 

medium/low) inactivated TP53 (normal, one allele and both alleles), double hit (bi-allelic TP53 inactivation or amp 1q on a 

background of ISS stage III) and global loss of heterozygosity (LOH) (> 4.6%). (A) Bi-allelic inactivation of TP53, high 

novel splicing, double hit, LOH and having more than 10 driver mutations were associated with poorer PFS (p-value <= 

0.05). (B) Only double hit was found to be significant in the multivariate analysis for PFS with a p-value of 0.013 and HR of 

4.76 (95% CI 1.38-16.37). (C) Univariate analysis of OS found high novel splicing and bi-allelic inactivation of TP53 were 

associated with poorer OS (p-value <= 0.05). Multivariate analysis of OS found only high splicing remained close to 

significant with a p-value of 0.051 and hazard ratio of 6.62 (95% CI 0.99-44.14). 
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Supplemental Table Legend [Excel Sheet] 

Supplementary Tables 1 [JunctionSeq AS]: Differential exon/splice junction expression 

analysis using JunctionSeq. List of features found to be significantly differentially 

expressed at a p-value < .05 

Supplementary Tables 2 [DEXSeq AS]: Differential splicing analysis using DEXSeq. List 

of differentially spliced genes found to be significantly at a p-value < 0.05 

Supplementary Tables 3 [SUPPA2 AS]: Differential splicing analysis using SUPPA2.  

List of differentially spliced genes found to be significantly at a p-value <0 .05 

Supplementary Tables 4 [Combined]: Combined results, all genes found to be 

significant by all analysis p-value < 0.05. Union and intersection of the different tools. 

Supplementary Tables 5 [Leafcutter AS]: Differential splicing analysis using leafcutter. 

List of differentially spliced genes found to be significantly at a p-value < 0.05 

Supplementary Tables 6 [LnScore NovelLoci]: List of significant novel splice junctions 

and the results of lnScore analysis to predict coding potential of possible novel transcripts. 

Supplementary Tables 7 [Salmon DESeq2 Gene]: Differential gene expression analysis 

using expression values from Salmon and DESeq2. List of genes found to be significantly 

differentially expressed at a p-value < 0.05 

Supplementary Tables 8 [Stringtie DESeq2 TX]: Differential gene expression analysis 

using expression values from StringTie and analyzed using DESeq2. List of genes found 

to be significantly differentially expressed at a p-value < 0.05 

Supplementary Tables 9 [Salmon DESeq2 TX]: Differential transcripts expression 

analysis using expression values from StringTie and analyzed using DESeq2. List of 

transcripts found to be significantly differentially expressed at a p-value < 0.05 

Supplementary Tables 10 [SUPPA2 TX]: Differential transcripts expression analysis 

using expression values from SUPPA2. List of transcripts found to be significantly 

differentially expressed (included) at a p-value < 0.05 


