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ABSTRACT

ong-term hematopoietic output is dependent on hematopoietic
Lstem cell (HSC) homeostasis which is maintained by a complex

molecular network in which microRNA play crucial roles, although
the underlying molecular basis has not been fully elucidated. Here we
show that microRNA-21 (miR-21) is enriched in murine HSC, and that
mice with conditional knockout of miR-21 exhibit an obvious perturba-
tion in hematopoiesis. Moreover, significant loss of HSC quiescence and
long-term reconstituting ability are observed in the absence of miR-21.
Further studies revealed that miR-21 deficiency markedly decreases the
nuclear factor kappa B (NF-kB) pathway, accompanied by increased
expression of PDCD4, a direct target of miR-21, in HSC. Interestingly,
overexpression of PDCD4 in wild-type HSC generates similar pheno-
types as those of miR-21-deficient HSC. More importantly, knockdown
of PDCD4 can significantly rescue the attenuation of NF-«kB activity,
thereby improving the defects in miR-21-null HSC. On the other hand,
we found that miR-21 is capable of preventing HSC from ionizing radia-
tion-induced DNA damage via activation of the NF-kB pathway.
Collectively, our data demonstrate that miR-21 is involved in maintain-
ing HSC homeostasis and function, at least in part, by regulating the
PDCD4-mediated NF-kB pathway and provide a new insight into radio-
protection of HSC.

Introduction

Hematopoiesis is a well-organized developmental process in which hematopoi-
etic stem cells (HSC) can self-renew and differentiate into all kinds of blood cells.'?
Under steady-state conditions, most adult HSC are retained in a relatively undiffer-
entiated and quiescent state in the bone marrow (BM) microenvironment, which is
necessary for sustaining long-term hematopoietic function.** In contrast, the pertur-
bation of HSC homeostasis may result in hematopoietic failure, immunodeficien-
cies or hematologic malignancies.” It was known that HSC homeostasis is tightly
modulated by a complicated molecular network.” In the past decades, many factors,
including cell cycle proteins, transcription factors, surface receptors, epigenetic reg-
ulatory factors, metabolic regulators, long non-coding RNA and cytokines, have
been found to be involved in the control of HSC homeostasis."*** However, the
underlying molecular mechanism is still not completely clear.

MicroRNA (miRNA) are small non-coding RNA that participate in a wide range
of biological processes by negatively controlling the expression of their target genes
through post-transcriptional regulation.”" Previous studies have shown that
miRNA have distinct expression patterns in the hematopoietic system, and specific
miRNA can affect the development of different blood-cell lineages.”* In recent
years, several miRNA, such as miR-22, miR-29a, miR-125a, miR-126, and the miR-
132/122 cluster,**" have been shown to play important roles in HSC biology:.

miR-21, a well-known short RNA, has multiple physiological functions in mam-
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mals. It was found that miR-21 is involved in Gfil-medi-
ated modulation of myelopoiesis and regulates
macrophage polarization and anti-inflammatory effects.”
* Besides, mice lacking miR-21 have reduced eosinophil
levels in the peripheral blood (PB) and impaired eosinophil
colony-forming capacity in the BM.* Furthermore, anoth-
er study revealed that miR-21 mediates hematopoietic
suppression in myelodysplastic syndromes by targeting
smad7, which is a negative regulator of the TGE-f/smad
pathway.” In particular, recent studies have defined miR-
21 as an onco-miRNA, which is frequently upregulated in
many kinds of tumors, including hematologic malignan-
cies.”” Taken together, these findings demonstrate that
miR-21 plays significant roles in the hematopoietic sys-
tem. On the other hand, miR-21 was reported to be impli-
cated in the biology of several types of stem cells, includ-
ing mesenchymal stem cells, cancer stem cells and embry-
onic stem cells.”*** However, the exact role of miR-21 in
HSC populations is largely unclear.

In the present study, we first found that mouse HSC
express high levels of miR-21 and that targeted deletion of
miR-21 leads to abnormal hematopoiesis. Furthermore,
miR-21 deficiency significantly impairs the quiescence
and long-term reconstituting function of HSC. We demon-
strated that miR-21 is involved in the maintenance of HSC
homeostasis and function through modulation of the
nuclear factor kappa B (NF-kB) pathway by regulating pro-
grammed cell death 4 (PDCD4). Of note, miR-21 is also
able to mitigate radiation-induced DNA damage in HSC.
Collectively, these data indicate a key role for miR-21 in
HSC biology and therefore broaden our knowledge of the
physiological functions of miR-21.

Methods

Animals

Normal, wild-type (WT) C57BL/6] mice were purchased from
the Institute of Zoology (Chinese Academy of Sciences, Beijing,
China). miR-21"* (miR-21"*) mice and Mx1-Cre mice were
obtained from Shanghai Model Organisms Center (China). miR-
21";;Mx1-Cre mice were generated by crossing miR-21"* mice
with Mx1-Cre mice. Unless otherwise stated, miR-21 deletion
was induced by intraperitoneally injecting 4- to 6-week old miR-
21%%:Mx1-Cre" mice with 250 ug of polyinosinic:polycytidylic acid
(pIpC) (Sigma, St. Louis, MO, USA) every other day for a total of
seven doses. Four weeks after pIpC treatment, these mice were
used in subsequent experiments. Identically treated miR-
21"Mx1-Cre littermates served as controls. Congenic C57Bl/6
SJL CD45.1* mice were kindly provided by Prof. Jinyong Wang
(Guangzhou Institutes of Biomedicine and Health, Chinese
Academy of Science, Guangzhou, China). All animal experiments
were approved by the Animal Care Committee of The Third
Military Medical University (Chongqing, China).

Flow cytometry

Single-cell suspensions of BM, spleen and PB were prepared as
we described previously.** Detailed information about the anti-
bodies used for flow cytometric analyses is provided in Online
Supplementary Table S1. The cell cycle, apoptosis, in vivo 5-bro-
modeoxyuridine incorporation and intracellular protein staining
were analyzed as we reported elsewhere.® Samples were detect-
ed using a FACSverse or FACSCanto flow cytometer (BD
Biosciences, San Jose, CA, USA) and data were analyzed using
Flow]o10.0 software (TreeStar, San Carlos, CA, USA). Cell sort-

ing was performed using a FACSAriall or FACSArialll sorter (BD

Biosciences).

Lentiviral transduction

The recombinant lentivirus carrying the PDCD4 gene or specific
short hairpin RNA (shRNA) against PDCD4, as well as the corre-
sponding negative controls, were obtained from Hanbio Co. Ltd.
(Shanghai, China). The lentivirus was then transduced into HSC
as we described previously.® Subsequently, transduced Lin-
SCAT1'¢c-KIT" (LSK) cells (6x10%) were purified with GFP expression
through flow cytometry, and transplanted into 10.0 Gy-irradiated
CD45.1* WT recipients along with 5x10° CD45.1* competitor BM
cells. The sequence of sh-PDCD4 is as follows: 5’-GAGCTTG-
TATATGAAGCCATTGTAA-3.

Microarray analysis

Total RNA was isolated from freshly sorted miR-21"" or miR-
21¥ LSK cells. After that, samples were hybridized on Mouse
Clariom D arrays (Affymetrix, Santa Clara, CA, USA) in triplicate
using the procedures described in the User Manuals. Raw data
were then normalized using the robust multi-array average. Genes
with a fold change in expression >1.4 and a P value <0.05 were
defined as differentially expressed and are listed in Online
Supplementary Table S3. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment were used to analyze the microarray data. The data have
been deposited in the Gene Expression Omnibus database (acces-

sion number GSE131603).

Statistical analysis

All results were analyzed using GraphPad Prism 6.0 software
(La Jolla, CA, USA). Differences in data between two groups and
multiple groups were analyzed by a two-tailed Student -test and
one-way analysis of variance, respectively. The survival rates were
compared by a log-rank nonparametric test and displayed as
Kaplan-Meier survival curves. Unless otherwise stated, data were
obtained from at least three independent experiments. P values
<0.05 were defined as statistically significant.

Results

miR-21 is enriched in hematopoietic stem cells
and its conditional ablation skews hematopoietic
differentiation

Previous miRNA expression profiling studies have
shown that miR-21 is highly expressed in mouse BM.***
To evaluate the role of miR-21 in hematopoiesis, we first
measured the expression of miR-21 in murine hematopoi-
etic stem and progenitor cells (HSPC). It was found that
the expression of miR-21 was relatively enriched in HSC
compared with that in committed hematopoietic progen-
itors (Figure 1A), which hints that miR-21 may play a
potential role in HSC biology. We then generated a con-
ditional knockout mouse model (miR-21"*;Mx1-Cre) by
crossing miR-21"" mice with Mx1-Cre mice (Figure 1B).
The deletion of miR-21 was induced in the hematopoietic
compartment by seven injections of pIpC (hereafter, miR-
217 Mx1-Cre” and miR-217":Mx1-Cre* mice are referred
to as miR-21"" and miR-21** mice, respectively), which
was confirmed by genomic polymerase chain reaction
(PCR) and quantitative real-time PCR (qRT-PCR) analysis
(Figure 1C, D; Ounline Supplementary Figure S1D).
However, we did not find significant differences in total
cell number in the BM and spleen, or in the counts of
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megakaryocyte-erythroid progenitors (MEP) and common
lymphoid progenitors (CLP) were reduced in the BM after
miR-21 deletion (Figure 1E G). These findings suggest that
miR-21 is crucial for steady-state hematopoiesis.

Targeted deletion of miR-21 generates an aberrant
hematopoietic stem cell pool
To determine how miR-21 affects hematopoiesis, we

next analyzed the phenotypes of HSC from miR-21*

mice
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Figure 1. miR-21 is enriched in hematopoietic stem cells and its conditional ablation skews hematopoietic differentiation. (A) Quantitative real-time polymerase
chain reaction (PCR) analysis of miR-21 expression in long-term hematopoietic stem cells (LT-HSC), short-term hematopoietic stem cells (ST-HSC), multipotent pro-
genitors (MPP), common myeloid progenitors (CMP), common lymphoid progenitors (CLP), granulocyte-monocyte progenitors (GMP) and megakaryocyte-erythroid pro-
genitors (MEP) isolated from normal 8-week old wild-type mice (n=4 mice). miR-21 expression was compared with that in LT-HSC. Gating strategies are provided in
Online Supplementary Figure S1A, B. (B) The strategy for the generation of the conditional miR-21 knockout mouse model. For detailed genotyping see Online
Supplementary Figure S1C. (C) Schematic for plpC-inducible deletion of miR-21 in the hematopoietic system. (D) PCR-based analysis of genomic DNA from the bone
marrow (BM) and spleen (Sp) of miR-21"" and miR-21** mice. (E) Flow cytometric analysis of the percentages of T cells (CD3e"), B cells (B220*) and myeloid cells
(Gr-1* and Mac-1*) in the BM of miR-21"" and miR-21~* mice (n=6 mice per group). (F, G) Flow cytometric analysis of the percentages of (F) CMP, MEP, GMP and (G)
CLP in the BM of miR-21"" and miR-21** mice (n=6 mice per group). All data are shown as means + standard deviation. *P<0.05, **P<0.01.
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by flow cytometry. There were evident increases in the per-
centage and number of LSK; but not lineage-negative cells
and myeloid progenitors, in the BM from miR-21%* mice
compared with those in the BM of miR-21"" mice (Figure
2A). Further analysis revealed that the frequency of long-
term HSC (LT-HSC) was increased, whereas the proportion
of multipotent progenitors was decreased in the LSK com-
partments in the absence of miR-21 (Figure 2B). Indeed, the
numbers of three LSK subpopulations, especially the LT-
HSC, were markedly increased in the BM after miR-21
knockout (Figure 2C). A similar result was obtained by
staining LSK with another set of HSC surface markers,
CD150 and CD48 (Figure 2D; Omline Supplementary Figure
S2A). We also observed a dramatic increase in the percent-
age of LSK in the spleen, but not in the PB, when miR-21

was deleted (Figure 2E; Online Supplementary Figure S2B).
These results indicate that miR-21 is responsible for sustain-
ing the normal HSC pool.

Loss of miR-21 impairs the quiescence and facilitates
the proliferation of hematopoietic stem cells

We then set out to explore the possible reasons for the
accumulation of phenotypic HSC after miR-21 knockout.
Actually, we found a minor but not significantly different
decrease in the apoptosis of HSC upon miR-21 ablation
(Online Supplementary Figure S3A). Importantly, cell cycle
and in vivo 5-bromodeoxyuridine incorporation analysis
revealed that miR-21 deficiency strikingly reduced the qui-
escence and increased the proliferation of HSC, but not of
myeloid progenitors (Figure 3A, B; Ounline Supplementary
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Figure 2. Targeted deletion of miR-21 generates an aberrant hematopoietic stem cell pool. (A) Flow cytometric analysis of the percentages and numbers of lineage-
negative (Lin") cells, myeloid progenitors (MP) and Lin-Scal'c-Kit' (LSK) cells in miR-21"" and miR-21~* bone marrow (BM) (n=6 mice per group). (B) Flow cytometric
analysis of the proportions of long-term hematopoietic stem cells (LT-HSC), short-term hematopoietic stem cells (ST-HSC) and multipotent progenitors (MPP) in LSK
from miR-21"" and miR-21~* mice (n=6 mice per group). (C) The numbers of LT-HSC, ST-HSC and MPP in miR-21""and miR-21~* BM (n=6 mice per group). (D) Flow
cytometric analysis of the number of CD150* CD48 LSK in miR-21fl/fl and miR-21~* BM (n=6 mice per group). (E) Flow cytometric analysis of the percentage of LSK
in the spleen (Sp) of MiR-21"" and miR-21** mice (n=6 mice per group). All data are shown as means + standard deviation. *P<0.05, **P<0.01.
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Figure S3B, C), which is in line with the expression pattern
of miR-21. Moreover, gRT-PCR data showed that cyclin-
dependent kinase inhibitors (p21 and p27) were downregu-
lated, whereas cell cycle-associated genes (cyclin E1, cyclin
E2, cyclin A2 and CDK6) were upregulated in LT-HSC in
the absence of miR-21 (Figure 3C).

Given that proliferating active cells are highly sensitive to
genotoxic stress,” we therefore administered miR-21"" and
miR-21** mice with a single dose of 5-fluorouracil. As
expected, miR-21%* mice displayed more severe myelosup-

pression compared with that of control mice (Figure 3D, E).
Likewise, the survival rate of miR-21** mice was signifi-
cantly reduced after weekly 5-fluorouracil injections (Figure
3F). Taken together, these data demonstrate that miR-21 is
required to maintain HSC in a quiescent state.

miR-21 deficiency intrinsically compromises
hematopoietic stem cell function in long-term
reconstitution

It has been well accepted that the maintenance of HSC
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Figure 3. Loss of miR-21 impairs the quiescence and facilitates the proliferation of hematopoietic stem cells. (A) Cell cycle analysis of LinScal‘c-Kit* (LSK) cells
and long-term hematopoietic stem cells (LT-HSC) in the bone marrow (BM) of miR-21"" and miR-21~* mice (n=6 mice per group). (B) miR-21"" and miR-21¥* mice
were intraperitoneally injected with 5-bromodeoxyuridine (BrdU: 1 mg/6 g mouse weight). Twelve hours later, BrdU incorporation into LSK and LT-HSC from these
mice was analyzed by flow cytometry (n=6 mice per group). (C) Quantitative real-time polymerase chain reaction analysis of the relative expression of cyclin-depen-
dent kinase inhibitors and cell cycle-associated genes in sorted miR-21"" and miR-21** LT-HSC (n=3 mice per group). (D, E) The number of BM cells (D) and LSK (E)
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quiescence is closely connected with these cells’ long-term
reconstituting capability.®” To study this, we first conduct-
ed non-competitive bone marrow transplantation (BMT)
assays (Figure 4A). Mice transplanted with miR-214* BM
cells died earlier than those transplanted with miR-21"*
BM cells in secondary non-competitive BMT (Figure 4B,
C). To further determine the function of miR-21** HSC,
we next performed competitive BMT assays (Figure 4D).
It was observed that miR-21 deficiency led to a reduced
percentage of donor-derived cells in recipients’ PB and LSK
compartments after primary and secondary transplants,
accompanied by myeloid-biased hematopoietic differenti-
ation (Figure 4E-H; Online Supplementary Figure S4A, B).

To substantiate these findings, we performed another
competitive BMT. BM cells from miR-21"";Mx1-Cre or
miR-21¥:Mx1-Cre* mice which were not administered
plpC were transplanted, and at 4 weeks after transplanta-
tion, miR-21 ablation was induced by injecting pIpC into
the recipients (Figure 4I). Consistently, the compromised
function and biased differentiation were also observed
(Figure 4], K). Furthermore, the reciprocal BMT experi-
ment indicates that BM microenvironmental changes are
not enough to mediate the functional defects in miR-214*
HSC (Online Supplementary Figure S4C-E). Collectively,
these data confirm that miR-21 intrinsically modulates
the function of HSC.

Specific knockout of miR-21 dramatically decreases
the NF-xB pathway in hematopoietic stem cells

To gain insight into the underlying mechanisms by
which miR-21 regulates HSC homeostasis and function,
we conducted a microarray analysis of sorted LSK from
miR-21"" and miR-21** mice. As shown in Figure 5A, we
identified 1,050 differentially expressed genes, of which
495 genes were upregulated and 555 genes were downreg-
ulated in HSC when miR-21 was deleted. GO enrichment
analysis showed that the upregulated genes were marked-
ly enriched in nucleosome assembly, mitotic nuclear divi-
sion, cell division, DNA replication-dependent nucleo-
some assembly, cell cycle and chromosome segregation
(Figure 5B), which was in accordance with the findings
that miR-21 knockout reduced the quiescence and pro-
moted the proliferation of HSC. Besides, consistent with
the myeloid bias that manifested in miR-21** mice, we
noticed a robust increase in the expression of myeloid dif-
ferentiation genes, such as Mpo, Fcgr3, Csfir, Igsf6, Ly6ct
and Ms4a3,*" in HSC after miR-21 knockout (Online
Supplementary Figure S5).

Importantly, KEGG pathway analysis revealed that
miR-21 ablation dramatically decreased the NF-kB path-
way in HSC (Figure 5C), which has been reported to play
a critical role in maintaining hematopoietic homeosta-
sis.** In fact, a marked downregulation of NF-kB down-
stream genes was observed in miR-21%* I'T-HSC (Figure
5D), including p21 (Figure 2C). The attenuation of NF-kB
activity was further verified by western blotting, immuno-
fluorescence and flow cytometry (Figure 5E-G). Notably,
the defects displayed in miR-21** mice, including myeloid
bias, accumulation of HSC in the BM and spleen, and
reduced quiescence and impaired reconstituting capacity;,
resemble such aspects of hematopoietic p65-null mice.”
Altogether, these results suggest that miR-21 deficiency
inhibits the NF-xB pathway in HSC, which may con-
tribute to the defects in HSC.

The upregulation of PDCD4 is responsible for the
defects in miR-21-null hematopoietic stem cells

Considering that miRNA negatively regulate gene
expression at the post-transcriptional level, we then ana-
lyzed the expression of miR-21 target genes throughly. Of
the miR-21 target genes that have a potential role in affect-
ing NF-xB activity,”** PDCD4, but not PTEN, Spryl or
Spry2, was markedly upregulated in HSC with miR-21
deficiency (Figure 6A-C; Online Supplementary Figure S6A).
The binding between miR-21 and the PDCD4 3’ untrans-
lated region was then confirmed by luciferase reporter
assay (Online Supplementary Figure S6B). Intriguingly, we
observed that PDCD4 expression was abundant in HSC in
mouse BM (Online Supplementary Figure S6C), which is
consistent with the specific role of miR-21 in HSC.

We next sought to determine whether the upregulation
of PDCD4 in HSC contributes to the decreased NF-«kB
activity, and defective phenotype and function observed
in miR-21%* mice. For this purpose, we transduced normal
HSC from WT mice with a lentivirus expressing PDCD4
and found that NF-kB activity was significantly inhibited
after overexpression of PDCD4 (Figure 6D). As a conse-
quence, ectopic expression of PDCD4 reduced the quies-
cence and long-term repopulating potential of HSC, and
also biased differentiation (Figure 6E, F; Ounline
Supplementary Figure S6D, E). To further verify this notion,
miR-21¥* HSC were transduced with a lentivirus carrying
shRNA against PDCD4 (Online Supplementary Figure S6F).
As expected, knockdown of PDCD4 partly rescued the
defects in miR-21-null HSC (Figure 6H, I; Ounline
Supplementary Figure S6G-I). These data underscore a crit-
ical role of miR-21 in supporting the NF-kB pathway by
targeting PDCD4, which is essential for the maintenance
of HSC homeostasis.

miR-21 protects hematopoietic stem cells from
irradiation-induced damage by activating the
NF-xB pathway

Evidence has indicated a vital role of NF-kB signaling in
mitigating irradiation-induced hematopoietic injury,**
which led us to speculate that miR-21 may affect irradia-
tion-induced biological processes in HSC. To confirm
this, miR-21"" and miR-21** mice were simultaneously
subjected to ionizing radiation. We found that the loss of
miR-21 led to distinctly decreased DNA damage repair,
accompanied by increased apoptosis, in HSC exposed to
irradiation (Figure 7A, B; Ounline Supplementary Figure
S7A). Moreover, several NF-kB target genes (ler3, Xrcc5
and Gadd45b) involved in DNA damage repair were sig-
nificantly decreased in HSC with miR-21 deficiency
(Figure 7C). Additionally, a more serious decrease in the
number of HSC and white blood cells and an increased
death rate were observed in miR-21** mice after irradia-
tion (Figure 7D, E; Online Supplementary Figure S7B). Based
on the finding that NF-«B signaling is implicated in
thrombopoietin-promoted DNA damage repair in HSC,
we administered thrombopoietin to the mice and
observed that it did not work in miR-214* HSC (Ounline
Supplementary Figure S7E G).

Finally, we determined whether the addition of exoge-
nous miR-21 can protect HSC from irradiation by activat-
ing the NF-kB pathway. Treatment of mice with a miR-21
agomir, which is an engineered miRNA mimic, increased
NF-«B activity in HSC by suppressing PDCD4 (Figure
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* 7H), thereby significantly alleviating irradiation-induced Discussion

damage (Figure 7]; Omnline Supplementary Figure S7C).

These effects were abrogated by a specific NF-xB The maintenance of HSC homeostasis contributes to
inhibitor, QNZ* (Figure 7J; Online Supplementary Figure  the continuous supplementation of blood cells throughout
S7C). In conclusion, our findings demonstrate that miR-  the lifetime."* In the past few decades, studies aimed at
21 can also protect HSC from radiation damage. researching hematopoiesis have revealed many factors
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MicroRNA-21 maintains HSC homeostasis -

capable of controlling the homeostasis of HSC. Recently,
growing evidence has suggested that miRNA play promi-
nent roles in hematopoietic cells, including HSC."”? In this
work, we showed for the first time that miR-21 is required
to maintain HSC homeostasis and function by sustaining
the NF-kB pathway.

As a multifaceted, non-coding RNA, miR-21 is present
in multiple tissues and implicated in various physiological
and pathological processes.” Here, we observed that miR-
21 is relatively enriched in HSC in adult mouse BM,
implying that this microRNA may be involved in HSC
biology. As a consequence, we found that specific knock-
out of miR-21 in the hematopoietic system causes an
abnormal expansion of the HSC pool in the BM and
spleen. Besides, mice with conditional deletion of miR-21
display a distinctly myeloid-skewed differentiation, along
with a decrease of B cells. The reason might be that miR-

21 deficiency affects the differentiation of HSPC, a con-
cept with is consistent with the findings of a previous
study.” In addition, a previous study showed that miR 21
can inhibit the apoptosis of diffuse large B cell lymphoma
cells through upregulating BCL-2.* Thus, miR-21 may also
play a direct role in regulating B-cell survival. Taken
together, our results reveal that miR-21 is essential to
maintain normal hematopoiesis in mice.

Recently, miR-21 has been increasingly regarded as an
oncogene due to its function in promoting tumor cell pro-
liferation and inhibiting apoptosis.” In the present study,
we found that miR-21 deficiency leads to a marked
impairment in HSC quiescence, accompanied by
increased proliferation, which is very different from the
functions of miR-21 in other types of cells. Additionally,
deletion of miR-21 in HSC had no effect on cell apoptosis
at a steady state. These results suggest that miR-21 regu-
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Figure 5. Specific knockout of miR-21 dramatically inhibits the NF-kB pathway in hematopoietic stem cells. (A-C) Lin-Scal‘c-Kit" (LSK) cells sorted from miR-21~*
and miR-21"" mice were used for microarray analysis. (A) Heatmap of genes differentially expressed between miR-21"" and miR-21** LSK. (B) Gene Ontology (GO)
analysis of genes upregulated in LSK after deletion of miR-21. The data shown are the top 15 enriched GO terms. (C) KEGG pathway analysis of downregulated genes
in miR-21~ LSK relative to miR-21"" LSK. The top five enriched pathways are shown. The microarray data were gathered from one experiment with three biological
replicates. (D) Quantitative real-time polymerase chain reaction analysis of the relative expression of NF-kB target genes (including Egrl, Tnf, Birc3, Nr4a2, Tnfaip3
and Nfkbia) in miR-21"" and miR-21* long-term hematopoietic stem cells (=3 mice per group). (E, F) The expression of p-p65 in LSK from miR-21"" and miR-21+*
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bar represents 5 um. (G) Flow cytometric analysis of the expression of p-p65 in LSK and LT-HSC from miR-21"" and miR-21** bone marrow (n=5 mice per group).
MFI: mean fluorescence intensity. All data are shown as means + standard deviation. **P<0.01.

haematologica | 2021; 106(2)




N I T

lates the cell cycle and apoptosis, most likely depending
on the cellular contexts. It was well recognized that the
loss of HSC quiescence can bring about a transient aug-
mentation of phenotypic HSC but eventually compromis-
es their function.® These results could explain our observa-
tion that miR-214* HSC have a diminished long-term
reconstituting capacity. Notably, the reciprocal transplan-
tation assay validated that the defects manifested in miR-
21-deficient HSC are cell-intrinsic. In addition, we
observed a myeloid bias in recipients transplanted with
miR-21** BM cells, which is consistent with the changes
in non-transplanted miR-21** mice.

In an effort to characterize the molecular mechanisms
by which miR-21 regulates HSC homeostasis, we per-
formed a microarray analysis. Notably, we observed a
marked downregulation of the NF-kB pathway when

miR-211
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miR-21 was deleted. It is well established that the NF-kB
transcription factor family plays a key role in various
physiological processes, including cell proliferation, apop-
tosis, inflammation and immune responses.” Current
studies using mouse genetic models have indicated that,
although aberrant activation of NF-kB is not beneficial for
hematopoiesis, basal NF-kB signaling is indispensable for
HSC homeostasis.” Interestingly, miR-21** HSC showed
similar phenotypes to those of p65-null HSC.*” However,
it is unknown whether miR-21 regulates HSC homeosta-
sis and function via the NF-xB pathway. Further investiga-
tions revealed that a previously recognized target of miR-
21, the tumor suppressor PDCD4,** was obviously
upregulated in HSC with miR-21 deficiency. However,
there is controversy about the function of PDCD4 in reg-
ulating NE-kB activity. Most studies have shown that
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cells from miR-21"" and miR-21** bone marrow (BM) (n=5 mice per group), determined by western blotting (A) and immunofluorescence (B), respectively. DAPI stain-
ing indicates the nucleus of cells. Scale bar represents 5 um. (C) Flow cytometric analysis of the expression of PDCD4 in LSK and long-term hematopoietic stem cells
(LT-HSC) from miR-21"" and miR-21** BM (n=5 mice per group). MFI: mean fluorescence intensity. (D) Western blotting analysis of the expression of PDCD4, p-p65
and p65 in LSK transduced with control or PDCD4 (n=5 mice per group). (E, F) Normal LSK from CD45.2* wild-type mice were transduced with the lentivirus carrying
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flow cytometry (n=6 mice per group). All data are shown as means * standard deviation. **P<0.01.
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PDCD4 is involved in promoting NF-kB activation.
However, in our study, we found that overexpression of
PDCD4 in WT HSC by lentiviral transfection inhibited
NF-«B activity, while knockdown of PDCD4 expression
significantly improved the defects in miR-21-null HSC.
These results elucidate that miR-21 sustains the NF-xB
pathway, at least partly, by directly targeting PDCDA4,
which is consistent with the results of a previous study.*
However, whether miR-21 can regulate other target genes
still needs further research. In addition, there is an oppos-
ing point of view that miR-21 inhibits NE-kB activity,®
which may involve miR-21 regulation of physiological
functions in a cellular context-dependent manner.

lonizing radiation-caused hematopoietic cell death is
primarily attributed to the generation of double-strand
breaks, which are the most serious form of DNA damage.’
At present, the acute myelosuppression induced by irradi-
ation can be temporarily treated using various hematopoi-
etic growth factors that are able to accelerate the recovery
of hematopoietic function by stimulating HSPC prolifera-
tion and differentiation.” However, an effective strategy
to protect DNA from irradiation-induced damage in HSC
is still lacking. Previous studies have revealed that miR-21
mediates resistance to radiation in many types of tumor
cells, which is a great challenge for cancer radiotherapy.”
Furthermore, it has been shown that miR-21 can be stim-
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deviation. *P<0.05, **P<0.01.
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ulated by irradiation via the EGFR/STAT3 and ATM path-
ways,** which is line with our data (Online Supplementary
Figure S7D). However, the role of miR-21 in HSC in the
context of irradiation remains obscure. In the present
study, we discovered that miR-21 can prevent HSC from
irradiation-induced DNA damage through activating the
NF-«B pathway, which is consistent with a recent finding
that miR-21 promotes hematopoietic cell survival after
exposure to irradiation.”” Moreover, our study revealed
that miR-21 may also be involved in thrombopoietin-
mediated non-homologous end junction repair in HSC.
Nevertheless, we do not deny that there may be other NE-
kB-independent mechanisms that mediate the radiopro-
tective effects of miR-21 in HSC.”

On the other hand, some studies have reported that
miR-21 is also a downstream target gene of the NF-kB
pathway.* Indeed, overexpression of PDCD4 or treatment
with a NF-xB inhibitor (QNZ) significantly inhibited the
expression of miR-21 in HSC from normal WT mice (data
not shown). These findings led us to hypothesize that there
may be a positive regulatory feedback loop that regulates
HSC function.

In summary, our findings reveal a novel function of
miR-21 as an important regulator of HSC homeostasis via
modulation of the NE-kB pathway by targeting PDCD4,

thereby extending our understanding of the biological
function of miR-21. At the same time, we demonstrate
that targeting miR-21 may be a promising avenue for safe-
guarding HSC against irradiation damage.
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