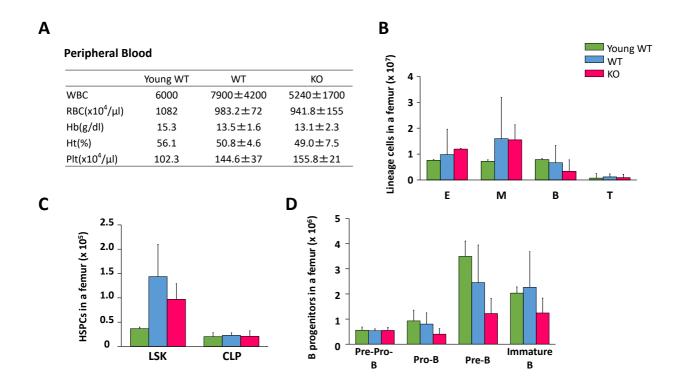
Signal-transducing adaptor protein-2 delays recovery of B-lineage lymphocytes during hematopoietic stress

Michiko Ichii,¹ Kenji Oritani,² Jun Toda,¹ Hideaki Saito,¹ Henyun Shi,¹ Hirohiko Shibayama,¹ Daisuke Motooka,³ Yuichi Kitai,⁴ Ryuta Muromoto,⁴ Jun-ichi Kashiwakura,⁴ Kodai Saitoh,⁴ Daisuke Okuzaki,³ Tadashi Matsuda,⁴ and Yuzuru Kanakura^{1,5}

¹Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita; ²Department of Hematology, Graduate School of Medical Science, International University of Health and Welfare, Narita; ³Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita; ⁴Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo and ⁵Sumitomo Hospital, Osaka, Japan

©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.225573

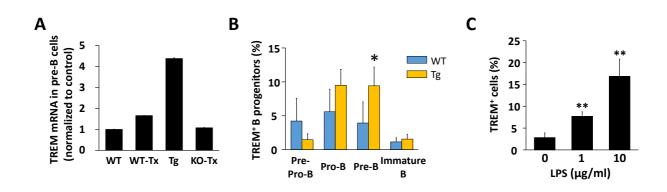
Received: April 26, 2019. Accepted: January 23, 2020. Pre-published: January 23, 2020. Correspondence: *MICHIKO ICHII* . michii@bldon.med.osaka-u.ac.jp


Supplemental Methods

Cultures

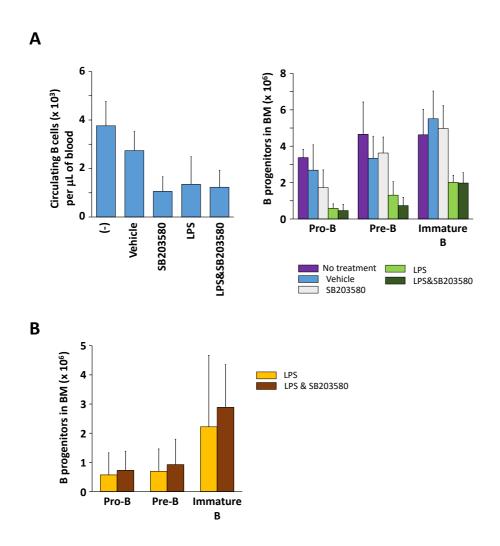
To evaluate B lineage development, the indicated populations were sorted and seeded onto monolayers of OP9 stromal cells. These co-cultures were maintained in aMEM (Gibco) containing 10% fetal calf serum (FCS), 2 mM L-glutamine, 5 × 10⁻⁵ M 2-mercaptoethanol (ME), 100 U/ml penicillin, and 100 µg/ml streptomycin (PC/SM) in the presence of stem cell factor (SCF, 20 ng/ml), flt3-ligand (FL, 100 ng/ml), and IL-7 (1 ng/ml) for 2 weeks. For stromal cell-free cultures, cells were incubated in S-clone SF-03 medium (Iwai Chemicals) containing 1% lot selected FCS, 2-ME, PC/SM in the presence of SCF (20 ng/ml), FL (100 ng/ml), and IL-7 (1 ng/ml) for 10-14 days. For assessment of pre-B cell colony formation, MethoCult M3630 (StemCell Technologies) was used. To evaluate pre-B cell characteristics, Mac1⁻ B220⁺ CD19⁺ CD43⁺ IgM⁻ B progenitor cells were cultured in optiMEM (Gibco) with lot-selected 10% FCS, PC/SM and 2-ME in the presence of IL-7 (10 ng/ml) for 7 days. For some experiments, lipopolysaccharide (LPS, Sigma-Aldrich) or recombinant murine proteins of IFNg (0.1 ng/ml), IL-6 (50 ng/ml), IL-1b (5.0 ng/ml), and TNFa (50 ng/ml) were added. All recombinant proteins were purchased from R&D systems.

Antigen	Distributor	Clone
CD3	BioLegend	145-2C11
CD8	BioLegend	53-6.7
CD11b/Mac1	BioLegend	M1/70
CD11c	BD Biosciences	HL3
CD19	BioLegend	6D5
CD43	BioLegend	1B11
CD45R/B220	BioLegend	RA3-6B2
CD45.1	BD Biosciences	A20
CD45.2	BioLegend	104
CD150	BioLegend	TC15-12F12.2
c-Kit	BioLegend	2B8
Flk-2	BioLegend	A2F10
Gr1	BioLegend	RB6-8C5
IgM	BioLegend	RMM-1
IL7Ra	BD Biosciences	SB/199
Ly6C	BioLegend	НК1.4
NK1.1	BioLegend	PK136
Sca-1	BioLegend	E13-161.7
Ter119	BioLegend	TER-119
ERK1/2 (pT202/pY204)	BD Biosciences	20A
STAT5 (pY649)	BD Biosciences	47/Stat5(pY694)
РЗ8МАРК (рТ180/рҮ182)	BD Biosciences	36/p38 (pT180/pY182)


Supplemental table 1. Antibodies used in this study.

Supplemental Figure 1. Hematopoiesis in aged STAP-2 knockout (KO) mice.

Aged STAP-2 KO mice were used to evaluate the role of STAP-2 in hematopoiesis. Hematopoietic cells were isolated from 12 to 22 month-old KO mice (n = 5), and from 7-16 week-old and age-matched wild-type (WT) control mice (n = 5). (A) The number of peripheral blood cells was calculated using hemocytometer. (B) The percentages of Ter119⁺ erythroid cells (E), Gr1⁺ or Mac1⁺ myeloid cells (M), CD19⁺ B cells, or CD3⁺ T cells in bone marrow were determined by flow cytometry, and absolute counts were calculated. (C-D) Without initial separation, the samples were stained for the lineage associated (Lin) marker, or other surface markers as indicated: Lin⁻ Sca-1⁺ c-Kit^{Hi} (LSK) hematopoietic stem/progenitor cells; Lin⁻ Sca1⁺ cKit^{low} Flk2^{high} IL7R*a⁺ common lymphoid progenitors (CLPs); B220⁺ CD43⁺ CD19⁻ IgM⁻ pre-pro-B; B220⁺ CD43⁺ CD19⁺ IgM⁻ pro-B; B220⁺ CD43⁻ CD19⁺ IgM⁺ immature B cells. Similar results were obtained in three independent experiments. Pooled data are shown as mean \pm SD. Statistical significances relative to WT controls were determined by unpaired two-tailed Mann-Whitney tests.


Supplemental Figure 2

Supplemental Figure 2. Regulation of TREM1 expression.

(A) RT-PCR was performed to analyze the expression of TREM-1 in pre-B cells with or without transplantation (Tx)(WT, n=6; WT-Tx, n=7; Tg, n=4; KO-Tx, n=4). The results are expressed as fold changes relative to wild-type (WT) samples. (B) The expression of TREM-1 on the indicated subset of B progenitors was analyzed by flowcytometry (n=8 in each). (C) TLR-4 transduced Baf-3 pre-B cells (kindly gifted from Dr. Miyake) were maintained in RPMI (Nacalai Tesque, Kyoto, Japan) supplemented with 10% fetal calf serum (FCS) and PC/SM in the presence of IL-3 (10 ng/ml), and treated with the indicated concentration of lipopolysaccharide (LPS), and the expression of TREM-1 was analyzed. Similar results were obtained in three independent experiments. The results are shown as mean \pm SD. Statistical significances, relative to WT control (A,B) or to a control without stimulation (C), were determined by unpaired two-tailed Mann-Whitney tests: *, p < 0.05 and **; p < 0.01.

Supplemental Figure 3

Supplemental Figure 3. Effects of p38 MAPK inhibitor on LPS-induced sepsis mouse model. WT (A, no treatment, n=3; vehicle, n=3; SB203580, n=4; LPS, n=4; LPS and SB203580, n=6) or Tg (B, n=5 in each) mice were treated with 1.0 mg /kg of lipopolysaccharide (LPS) and/or 20 mg /kg of p38 MAPK inhibitor SB203580, and flow cytometric analysis was conducted 2 days later. The number of B220⁺ CD19⁺ B cells in peripheral blood (A, left panel) as well as B lineage progenitor subsets (pro-B; B220⁺ CD43⁺ CD19⁺ IgM⁻, pre-B; B220⁺ CD43⁻ CD19⁺ IgM⁻, immature B; B220⁺ CD43⁻ CD19⁺ IgM⁺) in BM (A, right panel and B), are shown. While B cell number in peripheral blood was decreased in WT mice treated with SB203580, the inhibitor tended to attenuate the B progenitor suppression induced by STAP-2 overexpression. Similar results were obtained in two independent experiments. The results are shown as mean ± SD. Statistical significances were analyzed by unpaired two-tailed Mann-Whitney test, and there were no statistical differences.