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ABSTRACT

yrosine kinases have been implicated in promoting tumorigenesis

of several human cancers. Exploiting these vulnerabilities has been

shown to be an effective anti-tumor strategy as demonstrated for
example by the Bruton tyrosine kinase (BTK) inhibitor, ibrutinib, for
treatment of various blood cancers. Here we characterize a new multiple
kinase inhibitor, ARQ531, and evaluate its mechanism of action in pre-
clinical models of acute myeloid leukemia. Treatment with ARQ531, by
producing global signaling pathway deregulation, resulted in impaired
cell cycle progression and survival in a large panel of leukemia cell lines
and patient-derived tumor cells, regardless of the specific genetic back-
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with proteasome-mediated MYB degradation and depletion of short-
lived proteins that are crucial for tumor growth and survival, including
ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a
Accepted: October 10, 2019. patient-derived leukemia mouse model, causing significant impairment
Pre-published: November 7, 2019. of tumor progression and survival, at tolerated doses. These data justify
the clinical development of ARQ531 as a promising targeted agent for
the treatment of patients with acute myeloid leukemia.
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FLT3 and IDH1/2 inhibitors).*® However, identification of
patients who will benefit from targeted therapies is more
complex than simply identifying patients whose tumors
harbor the targeted aberration. A rational combination of
therapeutic agents may prevent the development of resist-
ance to therapy, with molecular strategies aimed at target-
ing multiple pathways resulting in a more effective treat-
ment across cancer subtypes.

The Bruton tyrosine kinase (BTK), a member of the TEC
family kinases, is a critical terminal kinase enzyme in the
B-cell antigen receptor signaling pathway.”® Its activation
leads to BTK phosphorylation which in turn results in
downstream events such as proliferation, immune func-
tion alteration and survival through multiple signaling cas-
cades.” Chronic activation of BTK-mediated signaling rep-
resents a key driver for a number of types of cancers,""
including AML.*” Therefore, new inhibitors are needed
to target tyrosine kinases better in these patients. Recent
studies have shown that oncogenic cellular dysregulation
is critical for the activity of the anti-BTK targeting agent
ibrutinib,”** and that co-treatment with BET protein bro-
modomain antagonists or BCL-2 inhibitors may enhance
the efficacy of ibrutinib in tumor cells.**

Herein we characterize ARQ531, a reversible small mol-
ecule inhibitor of BTK and several additional kinases, in
preclinical models of AML. We provide evidence that
ARQ531 greatly compromises survival of AML cells by
inducing a “one shot” inhibition of multiple oncogenic
transcriptional pathways. This resulted in potent anti-
AML activity in a patient-derived xenograft AML mouse
model, providing the rationale for future clinical trials.

Methods

Reagents

ARQ531 was provided by ArQule, Inc (Burlington, MA,
USA). The compound was dissolved in dimethylsulfoxide
(Sigma-Aldrich) and stored at 10 mM at -80°C for experi-
ments. Ibrutinib, daunorubicin, cytarabine and MG132
were purchased from Selleck Chemicals LLC (Houston,
TX, USA). ZVAD-FMK was purchased from Promega (cat-
alog n. G7232).

Patient-derived xenograft acute myeloid leukemia cells
Experiments were carried out on 6- to 8-week old, non-
obese diabetic severe combined immunodeficient
(NOD/SCID) interleukin-2 receptor y (IL-2Rg)-null (NSG)
mice. The NSG mice were bred and housed under
pathogen-free conditions in the animal facilities at the
European Institute of Oncology-Italian Foundation for
Cancer Research Institute of Molecular Oncology (IEO-
[FOM, Milan, Italy). All animal experiments were carried
out in strict accordance with Italian laws (Legislative
Decree 26/2014 and subsequent amendments) and were
approved by the institutional committee. NSG mice were
engrafted with 300,000 primary human AML cells (M4,
acute myelomonocytic leukemia with wild-type FLT3).
On day 19 after introduction of the AML cells, once a sys-
temic xenograft had been confirmed, mice were random-
ized into three groups: vehicle-treatment group (n=5),
low-dose ARQ531 treatment group (25 mg/kg; n=5) and
high-dose ARQ531 treatment group (37.5 mg/kg; n="5)
and the percentage of human leukemic cells in peripheral
blood was measured weekly until day 42. The phenotype

of human cells in NSG mice was evaluated using the fol-
lowing anti-human antibodies: anti-CD117-PeCy7
(IMMU 108.44), anti-CD45-APC (J.33), anti-CD34-APC-
Cy7 (D3HL60.251) from Beckman-Coulter (Irving, TX,
USA) and anti-mouse CD45-PE (30-F11) from BD
Biosciences to exclude murine cell contamination. Cell
suspensions were evaluated by a three-laser, ten-color
flow cytometer (Navios, Beckman Coulter, Brea, CA,
USA) using analysis gates designed to exclude dead cells,
platelets, and debris. Percentages of stained cells were
determined and compared to appropriate negative con-
trols. Seven-aminoactinomycin D (7AAD) from Sigma-
Aldrich was used to enumerate viable, apoptotic, and
dead cells.

Statistical analyses

All in vitro experiments were repeated at least three
times and performed in triplicate; a representative experi-
ment is shown in each figure. All data are shown as mean
+ standard deviation (SD). The Student ¢ test was applied
to compare two experimental groups using Graph-Pad
Prism software (htty://www.graphpad.com). The minimal
level of significance was specified as P<0.05. Survival
analysis was performed by the Kaplan-Meier method, and
the log-rank test was used to compare survival differences.
Drug interactions were assessed by CalcuSyn 2 software
(Biosoft), which is based on the Chou-Talalay method. A
combination index (CI) of 1 indicates an additive effect; a
Cl<1 indicates synergism and a CI>1 indicates antago-
nism.

Results

ARQ531 shows strong anti-acute myeloid leukemia
activity but preserves normal hematopoietic stem cells

In line with previously reported data,”' we observed
that BTK is frequently dysregulated in AML, with mRNA
levels being significantly higher than in other cancer types
(Online Supplementary Figure S1). To confirm its relative
abundance, we screened a representative panel of human
AML cell lines and primary blasts for BTK expression and
activity by western blot (Figure 1A). Protein was
detectable in all AML-screened cells (15/15) and, more
importantly, independent of specific mutational profiling.
Similarly, BTK activity (measured by Y223 phosphoryla-
tion) was observed in FLT3 wild-type and FLT3 mutated
cells as well. An analogous investigation was applied to a
larger cohort of AML patients derived from The Cancer
Genome Atlas database, which showed uniform expres-
sion of BTK transcript in different AML subtypes. Overall,
these data, by confirming the presence of BTK in AML,
support targeting this kinase in this hematologic malig-
nancy, as previously reported.""

ARQS31 is a recently described, reversible BTK
inhibitor with promising activity in mouse models of
chronic lymphocytic leukemia and lymphomas.” Based
on constitutively active BTK levels observed in AML cells,
we evaluated the therapeutic activity of ARQ531 on these
cells, using ibrutinib as a control. In vitro efficacy screening
was performed on cultured (n=8) and primary (n=183)
AML cells, comparing the efficacy of both drugs. As
shown in Figure 1B, exposure to ARQ531 reduced in vitro
viability more than ibrutinib did (Figure 1C). Analysis of
the half maximal inhibitory concentration (ICs) at 48 h

Preclinical activity of ARQ531 in AML e

haematologica | 2020; 105(10) -



- D. Soncini et al.

after treatment showed that the cells were more sensitive
to ARQS531 than to ibrutinib, which exhibited 10-fold
lower activity. (Figure 1D) A significant anti-AML effect of
ARQ531 was also observed on blasts from AML patients
(n=13) regardless of mutational status, European
LeukemiaNet risk, and surface expression of CD117
(Figure 1E, Table 1). Consistent with these data, a dose-
dependent increase in the percentage of apoptotic and
dead cells measured by annexin V and propidium iodide
staining was also observed after ARQS531 treatment,
together with several apoptotic features including caspase
3 and poly(AD-ribose) polymerase cleavage as well as
reduction of anti-apoptotic MCL-1 and BCL-2 protein
expression (Figure 1E G and Ounline Supplementary Figure
S2A). Viability was completely restored by pre-incubation
with the pan-caspase inhibitor Z-VAD (Online
Supplementary Figure S2B) In contrast, ibrutinib treatment
resulted in weaker effects on apoptosis, thus suggesting
that ARQ531 is more effective than ibrutinib, probably
because it induces downregulation of additional survival
mechanisms.

It is well known that the bone marrow microenviron-
ment has a role in the promotion of tumor growth, sur-
vival and drug-resistance.” We therefore treated AML cells
in the presence of normal or leukemic mesenchymal stro-
mal cells. As expected, normal and AML stroma both pro-
tected tumor cells from spontaneous apoptosis; however,
the efficacy of ARQ531 was preserved, with no significant
effect on the viability of mesenchymal stromal cells (data
not shown). Indeed, compared to spontaneous apoptosis of
blast cells, ARQ531 increased cell death in AML cells cul-
tured alone, and preserved its activity in the presence of
normal or AML mesenchymal stromal cells, suggesting
that ARQ531 abrogates the survival benefit from stromal
cells (Figure 2A). Overall, our data indicate that ARQ531 is
a potent anti-AML drug even in the presence of a tumor-
supportive microenvironment, and irrespective of FLT3
mutational status.” Finally, ARQ531 activity on normal
cells was also investigated by employing clonogenic and
viability assays in order to measure the impact of treat-
ment on both CD34* cells and mononuclear cells isolated
from the bone marrow and peripheral blood of healthy
donors. As shown in Figure 2B-D, all of these cells were
largely unaffected by exposure to ARQ531 at dose levels
toxic to tumor cells, proving that ARQ531 targets cancer
cells without off-target effects on hematopoietic stem
cells, resulting in a favorable therapeutic index.

BTK signaling inhibition partially contributes
to the anti-leukemic activity of ARQ531

Based on its reported activity, we first studied the effect
of ARQ531 on BTK signaling by analyzing tumor cell
migration.””* A transwell assay system was employed to
investigate the role of the stromal cell-derived factor 1
(SDEF-1)/CXCR4 axis in the anti-AML activity of ARQS31.
As shown in Ounline Supplementary Figure S3, ARQ531
reduced tumor cell migration in response to SDF-1 by
66% (P=0.001), suggesting similar activity to ibrutinib
(71% reduction; P<0.001).

Next, to confirm the role of BTK in the anti-AML activ-
ity of ARQ531, we investigated its effect on BTK signaling
in AML cells over a range of concentrations. As shown in
Figure 2E, ARQ531 treatment completely abrogated the
activity of BTK, as measured by Y223 phosphorylation,
similar to the effects seen with ibrutinib treatment.

However, as shown in Figure 1B, ARQ531 has anti-AML
activity even on cells expressing low levels of BTK, sug-
gesting that BTK targeting might not be critical for the
activity of ARQ531. To corroborate this hypothesis, we
treated BTK-silenced (BTK knocked down, BTK-KD) AML
cells with increasing doses of ARQ531. ARQ531 treat-
ment reduced the viability of both BTK-KD and BTK
wild-type cells to about 50% of control, demonstrating
the importance of alternative targets for ARQS31 activity
in AML (Figure 2F).

ARQ531 treatment suppresses transcriptional
oncogenic activity in acute myeloid leukemia cells

To identify ARQ531-induced global perturbations in
transcriptional profiling, we generated RNA-sequencing
data and performed functional annotation analysis of
drug- versus dimethylsulfoxide-treated AML cells. As
shown in Online Supplementary Figure S4A, principal com-
ponent analysis segregated samples based on treatment,
suggesting a coherent transcriptional result rather than
global, non-specific transcriptional silencing in response to
this drug. Indeed, analysis of differential expression iden-
tified 377 and 852 genes that were significantly upregulat-
ed and downregulated, respectively, with a ratio greater
than 2-fold and P<0.05. (Figure 3A, B) As a measure of the
specificity of this effect, gene set enrichment analysis was
performed on the entire set of signatures available from
the Molecular Signatures Database (MSigDB). Biological
modules associated with oncogenic transcriptional pro-
grams (e.g., ribosomal biogenesis and assembly, unfolded
protein response stress and MYC) were significantly
enriched in ARQ531-suppressed genes (Figure 3C and
Ounline Supplementary Figure S4B). In line with these find-
ings, although treatment did not exert significant suppres-
sion of gene sets for factors linked to the pathophysiology
of AML, such as C/EBPa-f3, RUNX1, PU.1, ERG and FLI1,
a significant reverse correlation was observed for tran-
scriptional signatures of MYC-upregulated target genes,
which in turn reflects the selective suppression of its tran-
scriptional networks. (Figure 3D) Indeed, reverse tran-
scriptase polymerase chain reaction analysis of MYC and
its target, CDC2, showed consistent downregulation fol-
lowing short-term exposure to the drug (Online
Supplementary Figure S4C), pointing to ARQ531 as a selec-
tive suppressor of the MYC-regulated transcriptional
pathway. To further support these data, we used the
ARQ531 expression signature to query the Library of
Integrated Network-Based Cellular Signatures (LINCS)
Program (www.lincscloud.org, web interface available at
http://amp.pharm.mssm.edu/L1000CDS2/#/index). As shown
in Figure 3E, the most significant ARQ531-correlated sig-
natures were those of oncogenic transcription factor
inhibitors (such as fluvastatin, gefitinib and histone
deacetylase inhibitors) as well as those related to knock-
down of ribosome subunits and translation initiation fac-
tors. Together, these data indicate that ARQ531 inhibits
oncogenic transcriptional pathways in AML cells.

ARQ531 interferes with the pro-survival MAPK pathway
in OCI-AML3 cells

As already reported, ARQ531 is a potent, ATP-compet-
itive, reversible inhibitor of BTK and several additional
kinases important to the viability, proliferation, activa-
tion, and motility of tumor cells.” Among the most
intriguing additional targets of ARQ531 are RAF1 and
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Figure 1. ARQ531 shows strong anti-tumor
activity by inducing apoptosis of acute myeloid
leukemia cells. (A) Immunoblot for phospho-
BTK, BTK and GAPDH (loading control) in the
indicated human acute myeloid leukemia (AML)
cell lines and primary AML samples regardless
of the specific genomic landscape. (B, C)
Viability of AML cell lines after treatment with
ARQ531 (B) or ibrutinib (C), as measured by MTS
Annexin V assay. The mean + standard deviation (SD) from
at least three independent experiments is
shown. (D) Half maximal inhibitory concentration
(ICs,) values, measured for each tested cell line
asin (B) and (C). (E) Drug effects on primary AML
patient-derived samples (n=13) treated with
increasing doses of ARQ531 or ibrutinib (0-30
uM for 48 h). IC;, values are visualized for each
tested primary AML cell line. (F) HL60, OCI-AML2
and primary AML-002 cells were treated with
ARQ531 or dimethylsulfoxide (CTR) in a dose-
dependent manner for 48 h. Apoptotic cells
were detected by annexin V/propidium iodide
staining. Representative dot plots are shown. (G)
Immunoblots for PARP, caspase 3, MCL-1, BCL-2
and tubulin on indicated AML cell lines and pri-
mary blast cells following treatment with a BTK
inhibitor (ARQ531 versus ibrutinib) at 24 h.
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MEK1, constituents of the ERK signaling pathway that is Table 1. Characteristics of the patients with acute myeloid leukemia.
frequently dysregulated in tumor cells.”* To confirm this [l FAB Karyotype NPM FLT3-ITD ELN risk
activity in AML, cells were treated with increasing doses classification group
of ARQ531. As expected, activation of AKT and ERK was w13 AML M2 normal mut wt low
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dicted inhibition of RAF1 and MEKI (Figure 4A). Al fiorma m m It
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ARQ531 treatment (Figure 4B). To support the pivotal — AML-007  AMLMS3 t(1517) / Wi M3
role played by ERK, we exposed cells to (t)he mitogenic  via06 AML M4 normal it ot low
effects of a higher serum concentration (20%). As shown
in Online Supplementary Figure S5A, B, this strategy resule-  AML005— AML M2 niormal mut - mut low
ed in enhanced phosphorylation of ERK, which rescued ~ AML-004  AML M4 normal mut wt low
the anti-AML activity of the drug, thus providing evi- ~ AML-003  AMLM2 normal wt wt int
dfefnce (I)\f1 the relevance.of ERK 1r;1 tP}iiI sterved a.nti-tun}or AML-001 AML M3 t(15,17) / mut M3
effect. Moreover, consistent wit -sequencing analy-  ~\\ 0l e H15:17) / ot M3

sis, drug exposure resulted in prominent and specific i
downregulation of the oncogenic transcription factor ~AML010.  AML M4 [Ld wt wt nt.
MYC at the protein level (Figure 4B). Since the MAPK ~ AML-002  AML M2 normal mut wt high
pathway enhances MYC protein stability by inducing its ~ FAB: French-American-British; ITD: internal tandem duplication; ELN: European

phosphorylation at serine 62,35 we assessed p-MYC S62 zgutkemiaNet'iAMl?,l: éi)clute myeloid leukemia; mut: mutated; wt: wild-type; int: interme-
late; n.a.; not available
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Figure 2. ARQ531 triggers anti-acute myeloid leukemia toxicity regardless of BTK activity and presence of stromal cells but preserves normal hematopoietic stem
cells. (A) Viability of OCI-AML2 GFP/luc* cells treated with ARQ531 for 48 h, alone and in the presence of normal mesenchymal stem cells (MSC) (blank) or acute
myeloid leukemia (AML)-MSC (gray) stroma, measured by a luciferase-based luminescence assay. Data are represented as mean + standard deviation (SD) in all his-
tograms (n=3). 0.02<*P<0.03; **P<0.05. (B-D) Healthy donor (HD)-derived hematopoietic precursor (BM-CD34*) and peripheral blood mononuclear cells (PBMC)
were exposed to increasing doses of ARQ531, and clonogenic abilities (C) or viability (B, D) were calculated. Colony formation of ARQ531-treated cells (CFC) was meas-
ured after 2 weeks. Viability was calculated as propidium iodide (Pl)-negative cells among the CD34" population. Data are represented as mean + SD (n=3); unpaired
t test, ***P<0.001, ****P<0.0001. (E) Western blot showing that ARQ531 treatment effectively abrogates the BTK signaling cascade in three different human AML
cell lines (HL60, OCI-AML3 and MOLM14) following 24 h of treatment. The effect of ibrutinib is also shown as a positive control. (F) Viability of BTK-silenced (nucleo-

fected with specific siRNA targeting BTK) or control HLEO cells (sSiRNA scramble) treated with increasing doses of ARQ531 for 48 h. Data are data represented as
mean + SD in all (n=3).
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lines, resulting in MYC downregulation. (C) Western blot showing time-dependent effects of ARQ531 expo-
sure on p-MYC S62 and total MYC in the HL60 cell line. (D) Western blot showing deregulation of c-MYC-
controlled signals in AML cells following treatment with ARQ531 at the indicated doses after 24 h. (E)
Viability of MYC-silenced or control HL60 cells treated with increasing doses of ARQ531 for 48 h. The
mean + standard deviation (SD) are shown (n=3). (F) Protein and mRNA expression in AML cells after 24
h treatment with dimethylsulfoxide (DMSO) or the indicated ARQ531 concentrations, normalized to DMSO
controls. Bars and error bars are means and SD of three independent experiments. *P<0.05; **P=0.01;
***P<0.001; n.s. not significant (relative to DMSO controls), one sample t-test. Western blots below
graphs show examples of MYB protein expression. (G) Western blot analysis of MYB protein expression in
AML cells after 24 h treatment with DMSO, ARQ531 (0.3-1 uM) or ARQ531 and 10 uM MG132, a protea-
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changes in AML-treated cells. As shown in Figure 4C,
ARQ531 exposure resulted in a prompt decrease of phos-
phorylation, followed by a reduction of MYC protein.
Accordingly, numerous MYC-addicted oncogenic cellular
pathways, such as protein folding machinery, metabolic
dependency and genome integrity, were compromised
following this treatment, as highlighted by phospho-
eukaryotic translation initiation factor 4E (elF4e), ASCT2
and GLUT1 downregulation and yH2AX enhancement,
respectively (Figure 4D). Combined drug screening
revealed synergistic activity of ARQ531 with compounds
affecting these programs, such as DNA damaging agents
(Online Supplementary Figure S6A, B). Overall, these data
support the existence of a mechanism of action that
begins with MAPK signaling dysregulation and results in
ARQ531-induced cytotoxicity in AML cells. Among
MYC-controlled programs, protein synthesis is emerging
as the limiting step for tumor cell growth,* so we focused
on this pathway. As shown in Figure 4D, AML cells treat-

T

ed with ARQ531 showed marked increases of eukaryotic
translation initiation factor 4E-binding protein (4EBP1)
with concomitant de-phosphorylation of p70 ribosomal
S6 kinase (p70-S6K) and elF4e which result in blocking of
mRNA recruitment to ribosomes for protein translation.”
These data suggest that ARQ531 is a modulator of several
hubs controlling translation initiation in AML cells, pro-
viding evidence of marked protein synthesis inhibition
specifically triggered by this treatment.

Although MYC activation resulting from multiple
tumor-driven genetic aberrations has been recognized as
a major factor of leukemogenesis, its targeting did not
show significant clinical benefit in AML. Thus, by using a
small interference RNA (siRNA) strategy, we investigated
the role of MYC in the anti-leukemic activity of ARQ531.
As shown in Figure 4E, MYC-silenced HL-60 cells (MYC
knocked down) were treated with increasing doses of
ARQS531. Surprisingly, despite their sensitivity to this
treatment, the cells were quite resistant to the loss of
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Figure 5. ARQ531 treatment results in oncogenic program dysregulation in acute myeloid leukemia cells. (A) Western blot analysis of cells treated with ARQ531 (1
uM) after the indicated hours. Time-dependent effects demonstrate early inhibition of BTK activity and MYC downregulation followed by a reduction of MYB with asso-
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trols), one-sample t-test. (C) Western blot showing that ibrutinib, JQ1, and their combination result in appearance of apoptotic features, including caspase 3 and PARP

cleavage in HLGO cells.

MYC protein expression, indicating that additional tar-
gets are implicated in anti-AML activity of this small mol-
ecule.

Modulation of transcriptional regulatory machinery is
an innovative strategy to treat AML.** The oncogenic
driver MYB, which is essential in hematopoiesis, is now
emerging as a new target for anti-AML therapies.”* We
hypothesized that ARQ531 treatment of AML cells may
inhibit this pathway. To validate this hypothesis, we
measured MYB protein levels in ARQ531-treated cells.
Exposure to ARQS31 resulted in marked MYB deregula-
tion (Figure 4F), suggesting an important contribution to
ARQS531 anti-tumor activity. To gain further insights into
MYB reduction triggered by ARQS531, we tested the pro-
teasome contribution, as previously reported for other
MYB-targeting agents.” As shown in Figure 4G, co-treat-
ment with the proteasome inhibitor MG132 preserved
MYB protein levels, suggesting that, in addition to its sup-
posed effects on protein synthesis, ARQ531 affects MYB
degradation. Our findings therefore suggest that ARQ531
interferes with many pro-survival pathways, such as
MAPK, in AML cells.

ARQ531 dysregulates multiple oncogenic transcription
factors in acute myeloid leukemia cells

To gain insights into the molecular mechanisms of
ARQS531, we analyzed treated HL-60 cells over time. As
shown in Figure 5A, BTK signaling deregulation occurred
early, after 2 h of treatment, followed by MYC downreg-
ulation. Importantly, apoptotic cell features, including
PARP and caspase 3 cleavage, were seen after the
decrease in MYB, suggesting that these events are crucial
for ARQ531 anti-tumor activity. Published data show
that small molecule BET inhibitors, by downregulating
hematopoietic transcription factors, lead to potent thera-
peutic effects in several cancer models, including AML.*¥
We therefore tested the anti-AML activity of the BTK
inhibitor ibrutinib combined with the BET bromodomain

inhibitor JQ1.” As was seen in other cell types,” the BET
inhibitor enhanced the anti-tumor activity of the BTK
inhibitor (Figure 5B). Western blot analysis of AML-treat-
ed cells confirmed these findings, further supporting the
pivotal role of transcription factor deregulation in the
anti-AML activity of ARQ531 (Figure 5C). Based on these
data, we investigated the role of MYB in ARQ531 anti-
AML activity by challenging BTK-silenced cells with the
repurposed drug mebendazole, recently described as a
drug that induces MYB degradation.” As expected,
mebendazole reduced cell viability of BTK-depleted cells
more than a control (Online Supplementary Figure S7A). We
then performed several genetic studies to confirm these
findings. As shown in Figure 6A, reduced viability was
observed in MYC/MYB-depleted cells compared with the
control, but more importantly, viability was significantly
dampened in triple MYB/MYC/BTK-silenced cells (reduc-
tion by 64.7% to 38.5%), suggesting that such inhibition
is detrimental to AML cells. Consistently, simultaneous
silencing of MYC, MYB and BTK resulted in PARP cleav-
age together with impairment of ERK phosphorylation
(Figure 6B). Similar data were observed in BTK-KD cells
(Figure 6C and Ounline Supplementary Figure S7B).
Nonetheless, the effect of triple knockdown was not
quite equal to that of ARQ531 treatment, suggesting that
other covalent or noncovalent targets are involved in the
drug’s mechanism of action.

Since MYB is reported to be crucial for leukemogene-
sis,”* we assessed the relationship between BTK and
MYB in AML cells. Molecular data analysis of different
publicly available AML cohort databases revealed higher
expression of BTK and MYB in AML cells compared to
normal HSC, with a positive correlation (Online
Supplementary Figure S8A-C). These data support the
notion that several oncogenic pathways, including BTK,
MYB and MYC, are essential for leukemia cell mainte-
nance, supporting the concept that ARQ531 could be an
effective multi-targeted agent for the treatment of AML.
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ARQ531 shows potent activity in a patient-derived
xenograft mouse model of acute myeloid leukemia

Based on in vitro data, we next assessed whether ARQ531
treatment would be effective and tolerable in animal models
by using our established AML patient-derived xenograft
model. NSG mice (n=20) were engrafted with 300,000 pri-
mary human AML cells (M4, acute myelomonocytic
leukemia). Successful engraftment was documented by
measuring circulating human CD45* (hCD45%) cells in the
animals’ peripheral blood with flow cytometry weekly for 2
months. At day 19 after infusion of the cells, once a sys-
temic xenograft had been confirmed, mice were dosed oral-
ly with vehicle or ARQ531 (25 or 37.5 mg/kg; 5 mice/group)
daily for 2 weeks. The percentage of human cells in periph-
eral blood samples was measured once a week up to day 42
(Figure 7A). ARQ531-treated mice had significant reductions
in the numbers of hCD45" cells despite very rapid growth of
the aggressive leukemic cells (Figure 7B). At day 42 after
starting treatment, there were 66.5+0.1% and 69.5+0.2%
hCD45+ cells after ARQ531 treatment at the doses of 37.5
and 25 mg/kg, respectively; in contrast, vehicle-treated mice
had 85% hCD45" cells (**0.005<P<0.008) (Figure 7C).
Analyses of bone marrow and spleen also showed reduc-
tions in tumor burden (hCD45%), although they were not
statistically significant (Online Supplementary Figure S9). In
addition, ARQ531 treatment was found to improve mouse
survival significantly. As shown in Figure 7D, Kaplan-Meier
analyses indicated that mice treated with the higher dose of
ARQS531 survived significantly longer than those treated
with the vehicle control (P<0.001). Overall, treatment was
well tolerated as suggested by the maintenance of body
weight and the lack of signs of toxicity, such as lethargy, ruf-
fled fur, respiratory distress and hunchback posture (data not
shown). Together these data indicate that, i vivo, ARQS531
administration was well tolerated and efficiently reduced
leukemia cell growth, providing impetus for clinical evalua-
tion of this novel small molecule.

Discussion

AML cells often demonstrate constitutive activation of
tyrosine kinase signaling resulting from specific genomic

aberrations.' These aberrations are attractive therapeutic
targets, as demonstrated by the pharmacological inhibitor
of BTK, ibrutinib, which blocks AML blast proliferation,
migration, and leukemic cell adhesion to bone marrow
stromal cells.” However, BTK-based treatment of AML
patients has been unsuccessful to date,” with only a few
preclinical, ex vivo studies suggesting that ibrutinib is effec-
tive against FLT3(ITD) and CD117 harboring cells, unlike
the clinical benefit seen in patients with chronic lympho-
cytic leukemia and lymphoma.”®” Adding inhibitory pres-
sure on the BTK pathway might enhance the efficacy of
this strategy, as previously reported.””**** In this study,
using a combination of genetic and biochemical approach-
es, we extensively characterized ARQ531, a novel,
reversible, orally bioavailable, ATP-competitive inhibitor
of BTK and associated kinases. ARQ531 greatly compro-
mises AML cell survival by modulating transcriptional reg-
ulatory machinery coordinated by MYC, demonstrating
activity both in vitro and in a patient-derived xenograft
AML mouse model. Thus, our study provides the ration-
ale for developing clinical trials using ARQ531 as a new
treatment for patients with AML.

Since ibrutinib does not directly inhibit components of
the MAPK pathway, it is possible that the superior activity
of ARQ531 in AML may be due to its modulation of addi-
tional targets, including kinases related to ERK signaling.”
Although screening analysis of Src-family kinases (includ-
ing Lyn and Syk) did not show any effect on AML cells,™
7 (Online Supplementary Figure S10) we assume that target-
ing of additional kinases is responsible for the marked
anti-AML activity of ARQ531. By combining computa-
tional models and whole transcriptional analysis, we
observed that ARQ531 treatment induces dysregulation of
several transcription-addicted programs, including MYC
and MYB. The combination of BTK inhibition and
MYC/MYB downregulation explains the improved anti-
AML activity of ARQ531 compared to single agent tyro-
sine kinase inhibitors such as ibrutinib. Since ARQ531
simultaneously inhibits different cellular functions such as
folding machinery, metabolic dependency, and genome
integrity, it may provide deeper and more durable remis-
sions, while delaying the emergence of resistance.
Additionally, based on reports that degrading MYB eradi-
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Figure 7. ARQ531 inhibits tumor growth and extends survival in a patient-derived xenograft mouse model of acute myeloid leukemia. (A) Experimental outline for

the analysis of the anti-leukemic activity of ARQ531 against primary human acute myeloid leukemia (AML) cells. A patient-derived xenograft mouse model of human
primary AML cells was used to assess the efficacy of ARQ531 against AML cells isolated from patients with AML M4. (B) Representative flow cytometric dot plots
representing tumor engraftment evaluated at day 35 after treatment. In the right panel, the histogram represents the percentage of human CD45* cells in mice. Data

are represented as mean + standard deviation; **P=0.006; ****P<0.001. (C) Circulating human CD45" cells were measured in peripheral blood by flow cytometry
weekly for 2 months. At day 19, a systemic xenograft was confirmed (tumor engraftment) and mice were randomized to receive vehicle control, a low dose of ARQ531

(25 mg/kg) or a high dose of ARQ531 (37.5 mg/kg). The percentage of human leukemic cells in peripheral blood of mice was measured weekly, up to day 42.
0.005<**P<0.008. (D) Kaplan-Meier curve of the patient-derived xenograft AML model following treatment with vehicle, a low dose of ARQ531 (25 mg/kg) or a high
dose of ARQ531 (37.5 mg/kg). The higher drug dose led to significantly longer overall survival compared to that of the vehicle-treated, control mice (5 mice/group;

P<0.001).

cates AML cells in mice without impairing normal
myelopoiesis,” ARQ531 treatment may be safe for
hematopoietic precursor cells, supporting its clinical rele-
vance. We also provide experimental evidence that the
bone marrow stroma is not affected by treatment and,
more importantly, does not affect the anti-tumor activity
of ARQS531. Preliminary phase I studies confirm the safety
profile of ARQS531, adding to the data that support its clin-
ical development.

Recent studies suggest that modulating transcriptional
regulatory machinery is an innovative strategy to treat
blood malignancies, including AML."* An example of this
strategy is all-trans retinoic acid treatment which, by mod-
ulating the transcriptional target PML-RARa, induces dif-
ferentiation of leukemic blasts resulting in improved sur-
vival of patients.” However, most transcription factors
remain notoriously difficult to target, with siRNA-mediat-
ed silencing of gene expression being one of the few fea-
sible approaches.” Other oncoproteins, including MYC
and MYB, are emerging as compelling targets for drug

development in AML, due to their ability to influence
tumor proliferation.”*** In this context, the new small
molecule ARQ531, by affecting multiple oncogenic path-
ways simultaneously, results in perturbation of the tran-
scriptional regulatory machinery which maintains AML
cell integrity. Therefore, targeting BTK, MYC and MYB
with ARQS31 represents an innovative strategy for
improving the efficacy of AML therapy.

In summary, we have demonstrated that ARQ531, a
new reversible tyrosine kinase inhibitor, suppresses AML
cell viability in vitro and in vivo by abrogating different
oncogenic targets including BTK, MYC and MYB. Gene
silencing of BTK, MYC and MYB in AML cells was not
as effective as ARQ531, suggesting that other covalent or
noncovalent targets are involved in its mechanism of
action. Based on our preclinical data, we provide the
rationale to explore the effects of this multi-targeted
agent on hematologic malignancies as well as solid
tumors, beyond investigating its clinical benefit in AML
patients.
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