CD27, CD201, FLT3, CD48, and CD150 cell surface staining identifies long-term mouse hematopoietic stem cells in immunodeficient non-obese diabetic severe combined immune deficient-derived strains

Bianca Nowlan,^{1,2,3,4,5} Elizabeth D. Williams,^{2,4,5} Michael R. Doran,^{1,2,3,4,5,6,*} and Jean-Pierre Levesgue^{3,5,*}

¹Stem Cell Therapies Laboratory, School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane; ²School of Biomedical Science, Faculty of Health, Institute of Health and Biomedical Innovation, QUT, Kelvin Grove, Queensland; ³Mater Research Institute – The University of Queensland, Woolloongabba; ⁴Australian Prostate Cancer Research Centre - Queensland, Brisbane, Queensland; ⁵Translational Research Institute, Woolloongabba, Queensland and ⁶Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australian Capital Territory, Australia

* MRD and JPL contributed equally to this work.

©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2018.212910

Received: November 22, 2018. Accepted: May 2, 2019. Pre-published: May 9, 2019. Correspondence: *JEAN-PIERRE LEVESQUE* - jp.levesque@mater.uq.edu.au *MICHAEL DORAN* - mike@mikedoranlab.com Complementarity of CD27, CD201, FLT3, CD48, and CD150 cell surface staining to identify long-term reconstituting mouse hematopoietic stem cells in immunodeficient non-obese diabetic severe combined immune deficient derived strains

Short Title: CD27, CD201, FLT3, CD48, and CD150 identify HSC in mice

Bianca Nowlan, Elizabeth D. Williams, Michael R. Doran, and Jean-Pierre Levesque

Supplementary Methods

Flow cytometry

HSC stain was performed on $5x10^{6}$ BM cells from a femur flushed with 1 mL of PBS + 2% FBS. Cells were stained in PBS+ 2% FBS containing 0.1 µg/mL purified rat anti-mouse CD16/CD32 antibody (Fc Block) (BD Bioscience), lineage (CD5, CD3 ϵ , Ter119, CD11b, Ly6G/Ly6C, CD41)-FITC, anti-SCA1-PE, CD150-Brilliant Violet (BV)-605, c-KIT-APC-Cy7, CD48-Pacific Blue, FLT3-PE-CF594, CD27-PECy7 and CD201-biotin. Control stain with isotype-matched antibody controls instead of CD27, CD201, and CD48 antibodies were used to position gates correctly. Cells were incubated for 40 minutes and washed before a secondary stain of streptavidin-APC in PBS+ 0.5% bovine serum albumin (BSA) for 30 minutes. Samples were then washed and resuspended in PBS with 2% FBS containing 2 µg/mL dead cell discriminator dye 7-amino-actinomycin D (7-AAD) (Invitrogen) and analyzed on a CyAn flow cytometer (Beckman Coulter). Full gating strategy for HSC is provided in Supplementary Figure S1. All antibodies used in the experiments are listed in Supplementary Table S1.

Lineage stain was performed on 10⁶ BM or spleen cells from each mouse. Cells were stained in PBS+ 2% FBS containing Fc Block, CD11b-PECy7, B220-APC-Cy7, CD3ɛ-Pacific Blue, NK1.1-PE, F4/80-AlexaFluor647, CD169-FITC, and CD244-biotin. Control stain with isotype-matched antibody controls instead of CD244 were used to position gates correctly. Cells were incubated for 40 minutes and washed before a secondary stain of streptavidin-BV-605 in PBS plus 5% BSA for 30 minutes. Samples were then washed and resuspended in PBS plus 2% FBS containing 7-AAD and analyzed on a CyAn flow cytometer (Beckman Coulter). Gating strategy for lineage stain is in Supplementary Figures S3-4.

All collected endosteal cells depleted of hematopoietic cells by magnetic enrichment as per manufactures protocol and were stained with PBS + 2% FBS containing Fc Block, CD45-BV785, Ter119-FITC, CD31-BV421, PDGFR α -APC, SCA1-PE-Cy7 and CD51-PE for 40 minutes. Control stain with isotype-matched antibody controls instead of PDGFR α , CD51, and SCA1 to were used to position gates correctly. Samples were washed and resuspended in PBS + 2% FBS containing 7-AAD and analyzed on a Fortessa flow cytometer (Beckman Dickson).

For the transplant sort experiments, 'full minus one' (FMO) color controls were used to determine correct gating strategy (Supplementary Figure S5).

Measurement of male cell engraftment

DNA was extracted using a modification of the whole blood protocol with a Genomic DNA spin column kit (Bioline BIO-52066). Blood samples were made up to 200 µL with PBS with 4 mM CaCl₂ for extraction with the kit. An aliquot of BM flush and splenocyte preparation equaling a fifth of one femur or a fifth of a whole spleen was used for genomic DNA preparation. Samples were digested at 56 °C for 3 hours and then centrifuged of 10, 000 rpm to exclude all cell debris and DNA-containing supernatants collected. 10 ng DNA was used in a quantitative PCR reaction using the SYBR green master mix (Thermofisher 4309155) with 4 nM of primers for the sry gene versus the *il6* gene. The level of male engraftment was determined by correlating the signal of the primers (2) (forward: sry 5'-TTATGGTGTGGTCCCGTGGT-3' and reverse: 5'-GGCCTTTTTTCGGCTTCTGT) compared total of il6 (forward: 5' to genomic expression gene GAACCAAGACCATCCAATTCATCTTGAAA and 3' reverse: GACCACAGTGAGGAATGTCCACAAA: 50 cycles at 95°C for 30 seconds followed by a minute at 60°C. A calibration and validation of male genomic DNA were made by mixing male and female BM cells in known ratios before extraction to confirm the linearity of Y chromosome

2

DNA amplicons relative to the proportion of male cells (Supplementary Figure S6). The proportion of male cells in test samples was calculated by linear regression extrapolation from the calibration regression. Mice which were counted as positively reconstituted when more than 1% were of male origin (Supplementary Table 4).

Competitive reconstitution units (CRU) frequencies were calculated by Poisson's statistic using the L-Calc software (Stem Cell Technologies). The number of CRU contained in each gate was then calculated by multiplying for each individual mouse the number of cells in each sort gate by the frequency of CRU in each gate (Supplementary Table S5).

Isolation culture and staining of Mesenchymal Stromal Cells

Mouse MSC were isolated from male NSG mice based on plastic adherence as previously reported (1). Briefly femurs and tibias were collected and gently crushed in a mortar with pestle to remove the BM. Bone fragments were washed repeatedly with PBS+ 2% FBS. Bone chips were then incubated in 3 mg/ml collagenase type 1 (Worthington) made in Iscove's Modified Dulbecco's Media (IMDM) for 20 minutes at 37 °C with shaking. Cells were then filtered with 70 μ m cell strainer and placed into culture with α -Minimum Essential Medium (MEM) supplemented with 10% FBS, 1% penicillin-streptomycin and 100 μ M phospho-ascorbic acid in atmosphere with 5% CO₂ at 37 °C. Medium was changed twice a week and passages were counted at each expansion step. Tissue culture reagents were purchased from Thermofisher unless mentioned otherwise.

After first passage, mouse MSC were depleted of mouse leukocytes by sorting the CD45⁻ population with a Beckman Coulter Astrios cell sorter. At passage 2, mouse MSC were stained with anti-SCA1 antibody or isotype-matched control to measure its expression on the Cytoflex (Beckman Coulter) flow cytometer.

Statistics

Statistics were performed with Graph Pad Prism 7 (La Jolla, CA) using one-way ANOVA analysis with Tukey Correction. The frequencies of competitive repopulation units (CRU) in the transplantation assays were calculated by Poisson's distribution statistics using the L-Calc software (Stem Cell Technologies, Vancouver, Canada).

3

Supplementary References

- 1. Cook MM, Futrega K, Osiecki M, Kabiri M, Kul B, Rice A, et al. Micromarrows--threedimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng Part C Methods. 2012;18(5):319-28.
- 2. Franco C, Britto K, Wong E, Hou G, Zhu S-N, Chen M, et al. Discoidin domain receptor 1 on bone marrow–derived cells promotes macrophage accumulation during atherogenesis. Circulation Research. 2009;105(11):1141.

Supplementary Table S1. Flow Antibodies used in experiment separated into each test

HSC stain	antibody	company	clone	catalogue number	Antibody concentration
	CD5 FITC	Biolegend	53-7.3	100606	2.5 µg/mL
	CD3£ FITC	Biolegend	17A2	100204	2.5 µg/mL
	B220 FITC	Biolegend	RA3-6B2	103206	2.5 µg/mL
	Ter119 FITC	Biolegend	TER-119	116206	2.5 µg/mL
	CD11b FITC	Biolegend	M1/70	101206	2.5 µg/mL
	Ly6G/Ly6C (Gr-1) FITC	Biolegend	RB6-8C5	108406	2.5 µg/mL
	CD41 FITC	Biolegend	MWReg30	133904	2.5 µg/mL
	Sca1 PE	Biolegend	D7	108108	2 µg/mL
	CD150 Brilliant Violet 605	Biolegend	TC15-12F12.2	115927	1 µg/mL
	CD117 (c-KIT) APC-Cy7	Biolegend	2B8	105826	1 µg/mL
	CD48 Pacific Blue	Biolegend	HM48-1	103418	2.5 µg/mL
	CD201 (EPCR) Biotin	Biolegend	RCR-16	141508	2.5 µg/mL
	CD27 PE-Cy7	Biolegend	LG.3A10	124216	1 µg/mL
	CD135 (Flt3) PE-CF594	BD Bioscience	A2F10.1	562537	2 µg/mL
	Streptavidin APC	Biolegend		405207	1 µg/mL
Lineage stain	antibody	company	clone	catalogue number	Antibody concentration
	CD11b PE-Cy7	Biolegend	M1/70	101216	1 µg/mL
	B220 APC-Cy7	Biolegend	RA3-6B2	103224	1 µg/mL
	CD3ε Pacific Blue	Biolegend	17A2	100214	2.5 µg/mL
	NK1.1 PE	Biolegend	PK136	108708	2 µg/mL
	F4/80 Alexa Fluor 647	Serotec	A3-1	MCA497A647	2.5 µg/mL
	CD169 FITC	Biolegend	3D6-112	142406	2.5 µg/mL
	CD244 Biotin	Biolegend	m2B4 (B6)458.1	133505	2.5 µg/mL
	Streptavidin Brilliant Violet 605	Biolegend		405232	0.5 µg/mL
Endosteal stain	antibody	company	clone	catalogue number	Antibody concentration
	CD45 BV785	Biolegend	30-F11	109839	2 µg/mL
	Terr-119 FITC	Biolegend	TER-119	116206	2.5 µg/mL
	CD31 BV421	Biolegend	390	102423	2 µg/mL
	CD140 (PDGFRa) APC	Biolegend	APA5	135908	2 µg/mL
	Sca1 PE-Cy7	Biolegend	D7	108114	2 µg/mL
	CD51 PE	Biolegend	RMV-7	104106	2 µg/mL
Tissue Culture MSC stain	antibody	company	clone	catalogue number	Antibody concentration
	Sca1 PE-Cy7	Biolegend	D7	108129	2 µg/mL
	Rat IgG1, ĸ	Biolegend		400416	2 µg/mL
	CD45 APC	Biolegend	30-F11	103112	2 µg/mL

Supplementary Table S2. Cell frequencies and total cells per femur between mouse strains

	C57bl/6		NOD-scid		NSG	
	Frequency	Cells/Femur	Frequency	Cells/Femur	Frequency	Cells/Femur
L ⁻ K ⁺ CD27 ⁺ CD201 ⁺	0.019% ± 0.007%	5,872 ± 2,365	0.100%± 0.012%	23,077 ± 5,495	0.041%± 0.014%	8,744 ±3,520
L ⁻ K ⁺ CD27 ⁺ CD201 ⁺ FLT3 ⁻ CD48 ⁻ CD150 ⁺	0.0012% ± 0.0004%	362 ±125	0.0015%± 0.0003%	332 ± 83	0.0007% ± 0.0005%	145 ± 99

Average ± standard deviation – 5 mice per group.

Supplementary Table S3. CD244 prevalence in bone marrow and spleen of mice strains

		C57BL/6		NOD-scid		NSG	
		CD244+ Percent of parent	CD244+ Cells/ femur	CD244+ Percent of parent	CD244+ Cells/ femur	CD244+ Percent of parent	CD244+ Cells/ femur
BONE MARROW	Monocytes (CD11b⁺ F4/80⁺ CD169⁻)	10.85% ± 2.05%	263,677 ± 58,364	0.35% ± 0.05%	3,588 ± 865	0.54% ± 0.22%	2,614 ± 738
	Macrophages (CD11b ⁺ F4/80 ⁺ CD169 ⁺)	2.79% ± 0.31%	65,609 ± 9,949	0.6% ± 0.08%	10,656 ± 2,349	0.73% ± 0.14%	18,056 ± 1,578
	Neutrophils and myeloid progenitors (CD11b ⁺ F4/80 ⁻ CD169 ⁻)	2.01% ± 0.35%	88,499 ± 11,917	0.12% ± 0.04%	4,934 ± 2,132	0.12% ± 0.06%	2,210 ± 1,264
	B cells (CD11b⁻ B220⁺)	1.55% ± 0.41%	74,026 ± 30,276	0.73% ± 0.26%	3,570 ± 1,510	1.36% ± 0.47%	2,621 ± 969
	NK cells (CD11b⁺ Nk1.1⁺)	78.44% ± 2.04%	128,456 ± 20,757	62.31% ± 12.27%	4,858 ± 593	84.59% ± 6.04%	7,687 ± 1,139
	T cell (CD11b⁻ B220⁻ CD3⁺)	4.04% ± 1.77%	5,318 ± 2,027	2.21% ± 0.59%	586 ± 171	7.61% ± 5.74%	1,094 ± 404
SPLEEN	Monocytes (CD11b ⁺ F4/80 ⁺ CD169 ⁻)	39.36% ± 4.36%	110,051 ± 27,242	3.13% ± 1.4%	1,797 ± 1,303	2.08% ± 0.83%	955 ± 467
	Macrophages (CD11b ⁺ F4/80 ⁺ CD169 ⁺)	31.06% ± 2.09%	6,075 ± 1,480	10.51% ± 8.21%	1,431 ± 1,113	6.97% ± 4.66%	633 ± 336
	Neutrophils and myeloid progenitors (CD11b ⁺ F4/80 ⁻ CD169 ⁻)	23.86% ± 2.38%	696,150 ± 9,656	0.27% ± 0.08%	140 ± 73	0.29% ± 0.04%	161 ± 35
	B cells (CD11b⁻ B220⁺)	0.5% ± 0.07%	13,815 ± 1,792	5.06% ± 1.18%	1,183 ± 616	3.66% ± 0.4%	1,051 ± 435
	NK cells (CD11b⁺ Nk1.1⁺)	76.83% ± 2.89%	105,262 ± 32,778	91.46% ± 3.68%	2,660 ± 1,715	90.11% ± 2.94%	1,545 ± 858
	T cell (CD11b ⁻ B220 ⁻ CD3⁺)	0.65% ± 0.04%	6,623 ± 568	12.5% ± 5.16%	113 ± 78	10.79% ± 9.33%	63 ± 41

Average ± standard deviation - 5 mice per group

Supplementary Table S4: Transplant results from mice including 12 and 16 week bleeds and 18 week harvest of blood, spleen and bone marrow.

Transplant results		Bleed (Weeks)			Harvest 18 weeks			
						Bone		
Group	Cells tx	mouse #	12	16	Blood	Marrow	Spleen	
		H1	0.01%	0.01%	0.01%	0.06%	0.03%	
		H2	0.02%	0.05%	0.08%	0.03%	0.03%	
	10	H3	0.01%	0.11%	0.00%	0.05%	0.03%	
	10	H4	0.05%	0.38%	0.00%	0.02%	0.03%	
		H5	0.41%	0.04%	0.00%	0.10%	0.11%	
		H6	0.10%	0.35%	0.07%	0.05%	0.09%	
		H7	0.01%	0.14%	0.12%	0.05%	0.03%	
		H8	7.42%	10.80%	13.26%	2.71%	5.95%	
		H9	3.67%	1.91%	1.17%	2.50%	0.48%	
		H10	0.06%	0.35%	0.01%	0.04%	0.07%	
		H11	20.32%	10.49%	9.16%	0.07%	0.27%	
		H12	0.03%	0.07%	0.00%	0.03%	0.08%	
LT-HSC	50	B1	5.46%	3.05%	2.07%	0.17%	1.46 %	
		B2	0.03%	0.00%	0.00%	0.06%	0.09%	
		B3	0.15%	0.00%	0.01%	0.03%	0.05%	
		B4	0.68%	0.00%	0.00%	0.01%	0.24%	
		B5	0.03%	0.29%	0.01%	0.08%	0.05%	
		B6	0.04%	0.00%	0.01%	0.16%	0.10%	
		B7	0.09%	0.00%	0.00%	0.05%	0.10%	
		C1	0.22%	0.01%	0.02%	0.06%	0.17%	
	150	C2	54.98%	59.43%	23.36%	2.21%	11.69%	
		C3	49.46%	50.53%	40.41%	5.36%	25.60%	
		C4	33.42%	12.03%	19.56%	1.40%	1.37%	
		C5	6.50%	0.00%	0.56%	0.30%	0.97%	
		C6	2.24%	0.36%	0.00%	0.00%	0.08%	
	10 50	N1	0.00%	0.05%	0.00%	0.04%	0.03%	
		N2	0.01%	0.25%	0.00%	0.05%	0.04%	
		N3	0.01%	0.10%	0.06%	0.04%	0.06%	
		N4	0.09%	0.06%	0.10%	0.08%	0.07%	
		N5	0.00%	0.17%	0.00%	0.06%	0.09%	
		N6	0.01%	0.03%	0.00%	0.09%	0.06%	
		N7	0.00%	0.02%	0.07%	0.07%	0.10%	
		N8	0.00%	0.05%	0.08%	0.06%	0.05%	
		N9	0.00%	0.03%	0.01%	0.07%	0.04%	
		N10	0.01%	0.25%	0.00%	0.02%	0.04%	
		D1	0.06%	0.00%	0.02%	0.00%	0.05%	
NOT		D3	0.06%	0.00%	0.01%	0.06%	0.05%	
GATE		D4	0.07%	0.00%	0.00%	0.04%	0.03%	
		D5	0.14%	0.03%	0.05%	0.18%	0.18%	
		E1	0.04%	0.00%	0.01%	0.07%	0.18%	
		E2	0.22%	0.00%	0.00%	0.06%	0.11%	
	150	E3	0.04%	0.00%	0.00%	0.12%	0.20%	
		E4	0.12%	0.00%	0.07%	0.01%	1.01%	
		E5	0.12%	0.00%	0.10%	0.07%	0.10%	
	1000	F1	0.67%	0.02%	0.29%	0.15%	0.47%	
		F2	12.14%	0.46%	1.38%	2.22%	0.95%	
		F3	0.77%	0.02%	0.04%	0.06%	0.27%	
		F4	0.04%	0.00%	0.10%	0.11%	0.24%	
		F5	0.23%	0.00%	0.07%	0.22%	0.97%	

Percent male (sry^{+}) engraftment of female mice at each bleed or harvest. Mice >1% in bold to indicate successful engraftment. Tx= transplanted

Supplementary Table S5. Competitive reconstitution units per sort gate based on LT-HSC frequencies determined by serial dilution transplants

	LK CD27+ CD201+	CD48-	CRU		NOT	CRU		Proportion CRU in CD48 ⁻ CD150 ⁺ gate versus parent LK CD201 ⁺ CD27 ⁺
Mouse	FLT3-	CD150+	Frequency	CRU/Gate	GATE	Frequency	CRU/Gate	FLTt3 ⁻ gate
1	10,407	560		3.1	9,847	1/5,786	1.7	64.6%
2	11,912	784	1/170	4.4	11,128		1.9	69.8%
3	5,014	374	1/1/9	2.1	4,640		0.8	72.4%
4	9,492	892		5	8,600		1.5	76.9%
							Mean	70.9%
							SD	5.2%

Abbreviations: LK= lineage⁻ C-KIT⁺; CRU= competitive reconstitution units; SD= standard deviation.

Supplementary Figure S1. Gating Strategy to identify phenotypic HSC in C57BL/6 mice. 5x10⁶ BM cells were stained with HSC antibody cocktail and analyzed by flow cytometry. (A-C) Viable single cells were gated as (D) Lineage-negative, c-KIT⁺ and (E) CD201 and CD27 positive. F) Isotype control for CD27 and CD201. Lin⁻ Kit⁺ CD27⁺CD201⁺ cells were further gated on FIt-3 (G). Lin⁻ KIT⁺ CD27⁺CD201⁺ cells gated to define the primitive FLT3⁻ HSPC and subsequently CD48⁻ CD150⁺ phenotypic HSC (H). (I) Lin⁻ KIT⁺ CD27⁺ CD201⁺ cells (red) were examined for SCA1 and KIT expression and (J) overlaid with Lin⁻ KIT⁺ CD27⁺CD201⁻ cells (blue).The position of the SCA1+ KIT+ gate is highlighted in red.

Supplementary Figure S2. Combination of CD48⁻ CD150⁺ gating and CD27⁺ CD201⁺ gating is necessary to identify phenotypic HSCs. 5x10⁶ BM cells from each mouse strain were stained with HSC antibody cocktail and analyzed on flow cytometry. (A-C) Viable single cells were gated as (D) Lineage negative, c-KIT⁺ and (E) FLT3 negative, and then examined for CD48 and CD150 for the mice stains, C57BL/6 in black box (F), NOD-*scid* in blue box (I) and NSG in red box (L). L⁻K⁺FLT3⁻CD48⁻CD150⁺ cells were gated to CD27 and CD201 expression in C57bl/6 (G), NOD-*scid* (J) and NSG (M). Only a minority of Lin⁻ KIT⁺ FLT3⁻ CD48⁻ CD150⁺ cells are also CD27⁺ CD201⁺. SCA1 expression heterogeneity was demonstrated at this level by taking the CD27⁺ CD201⁺ gate (red) versus the NOT GATE (blue) for the three mouse strains (H, K, and N).

Supplementary Figure S3. Quantification of lineage-positive leukocytes in the bone marrow of different mouse strains. Each mouse strain appears in a different coloured column box: Viable single cells were gated into lymphoid (CD11b⁻ low side scatter) and myeloid (CD11b⁺) gates for each mouse strain (A-C). Myeloid cells were further separated using CD169 and F4/80 (D-F) as CD11b⁺ F4/80⁺ CD169⁻ monocytes, CD11b⁺ F4/80⁺ CD169⁺ macrophages and CD11b⁺ F4/80⁻ CD169⁻ gate which includes granulocytes and immature myeloid cells. Lymphoid cells (G-I) were plotted with B220 against NK1.1 to identify B (CD11b⁻ B220⁺ NK1.1⁻) and NK (CD11b⁻ NK1.1) cells. The B220⁻ NK1.1⁻ gate was plotted for CD3 ϵ expression to identify CD3 ϵ ⁺ T cells (J-L). Total cells per femur for each cell type in histograms (M-R). Data are average ± SD of n=5 mice per group. P-values were calculated by ANOVA with Tukey corrections with multiple comparisons, * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.001, **** p ≤ 0.0001.

Supplementary Figure S4. quantification of lineage positive leukocytes in the spleen of different mouse strains. Each mouse strain appears in a different coloured column box: Viable single cells were gated into lymphoid (CD11b⁻ low side scatter) and myeloid (CD11b⁺) gates for each mouse strain (A-C). Myeloid cells were further separated using CD169 and F4/80 (D-F) as CD11b⁺ F4/80⁺ CD169⁻ monocytes, CD11b⁺ F4/80⁺ CD169⁺ macrophages and CD11b⁺ F4/80⁻ CD169⁻ gate which includes granulocytes and immature myeloid cells. Lymphoid cells (G-I) were plotted with B220 against NK1.1 to identify B (CD11b⁻ B220⁺ NK1.1⁻) and NK (CD11b⁻ NK1.1) cells. The B220⁻ NK1.1⁻ gate was plotted for CD3 ϵ expression to identify CD3 ϵ ⁺ T cells (J-L). Total cells per spleen for each cell type in histograms (M-R). Data are average ± SD of n=5 mice per group. P-values were calculated by ANOVA with Tukey corrections with multiple comparisons, * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.001, **** p ≤ 0.0001.

Supplementary Figure S5. CD27, CD201, FLT3, CD48, and CD150 sort controls. A-C) single cell sorting. (D) Lineage negative, KIT⁺ gate to determine the full minus one controls for setting up sort parameters and gates. (E) is the minus CD201-APC control, (F) the minus CD27-PECy7 control. (G) shows the FLT3-PECF594 minus control and (H) shows the CD48-Pacblue and CD150-PE minus controls.

Supplementary Figure S6. qPCR titration of male donor genomic DNA versus female DNA for chimerism quantification. Amplification curves of *sry* (A) and *il6* gene (B) in different mixtures with different proportions of male and female leukocytes. (C) The linear relationship between the proportion of male cells and intensity of *sry* genomic DNA relative to *il6* genomic DNA.