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SUPPLEMENTARY METHODS 

 

Patients series 

The FIL-MCL0208 (NCT02354313) is a phase III, multicenter, open-label, randomized, 

controlled study, designed to determine the efficacy of lenalidomide as maintenance versus 

observation in young (18-65 years old), fit, advanced stage (Ann arbor II-IV) MCL patients who 

achieved complete or partial remission after first line intensified and high-dose chemotherapy plus 

rituximab followed by ASCT. Briefly, patients received 3 R-CHOP-21, followed by R-high-dose 

cyclophosphamide (4g/m2), 2 cycles of R-high-dose Ara-C (2g/m2 q12x3 d) and ASCT conditioned 

by using the BEAM or FEAM regimen. From May 2010 to August 2015, a total of 300 patients were 

enrolled in the study. Cases of non-nodal MCL were excluded.1 All patients required to have a biopsy 

proving MCL, including evidence of cyclin D1 overexpression or t(11;14)(q13;q32) translocation. 

MCL diagnosis was confirmed by centralized pathological revision according to WHO criteria.1 The 

clinical trial, as well as the ancillary mutational study, were approved by the Ethical Committees of 

all the enrolling Centers. All patients provided written informed consent for the use of their biological 

samples for research purposes, in accordance with Institutional Review Boards requirements and the 

Helsinki's declaration. Clinical results of the fist interim analysis of the trial were already presented.2 

Final, unblinded results are not available at the moment and have not been yet presented anywhere. 

 

Biological samples 

Bone marrow (BM) and peripheral blood (PB) samples were collected, as per protocol, at 

baseline and at several time-points during follow-up, corresponding to the pre-planned time-points 

for minimal residual disease (MRD) analysis. To identify and quantify the rate of tumor invasion, 

flow cytometry (FC) was performed both on BM and PB with the following antibodies: anti-CD19 

APC, anti-CD23 PE, anti-CD5 FITC, and anti-CD20. Tumor cells were sorted from the baseline BM 



samples by immunomagnetic beads (CD19 MicroBeads,human-Miltenyi Biotec GmbH, Bergisch 

Gladbach, Germany) and stocked as dry pellets. 

Tumor DNA was extracted according to DNAzol protocol (Life Technologies). Germline DNA was 

obtained from PB mononuclear cells collected under treatment and proven to be tumor free by MRD 

analysis. 

 

Next generation sequencing 

A targeted resequencing panel (target region: 37’821 bp) (Table S1) including the coding 

exons and splice sites of 7 genes (ATM, TP53, CCND1, WHSC1, KMT2D, NOTCH1 exon 34, BIRC3) 

that are recurrently mutated in ≥ 5% of MCL tumors was specifically designed.3-5 We also included 

in the panel TRAF2 6 and CXCR4.7 The gene panel was analyzed in tumor DNA from baseline BM 

CD19+ purified MCL cells (186 cases) and, for comparative purposes to filter out polymorphisms, in 

the paired normal genomic DNA (105 cases). NGS libraries preparation was performed using TruSeq 

Custom Amplicon sequencing assay according to manufacturer’s protocol (Illumina, Inc., San Diego, 

CA). Multiplexed libraries (n=48 per run) were sequenced using 300-bp paired-end runs on an 

Illumina MiSeq sequencer, (median depth of coverage 2356x). To avoid the loss of NOTCH1 ex 34 

c.7544_7545delCT mutation, that is included in a region poorly covered by the target design, all MCL 

cases were also analyzed by amplification refractory mutation system (ARMS) polymerase chain 

reaction (PCR).  

 

Bioinformatic analysis  

FASTQ sequencing reads were locally aligned to the hg19 version of the human genome 

assembly using the BWA v.0.6.2 software with the default setting, and sorted, indexed and assembled 

into a mpileup file using SAMtools v.1. The aligned read families were processed with mpileup. A 

cut-off of 10% of variant allele frequency (VAF) was set for variant calling. Among cases provided 

with both tumor and paired normal gDNA, single nucleotide variations and indels were called using 



the somatic function of VarScan2. The variants called by VarScan2 were annotated by using the 

SeattleSeq Annotation 138 tool by using the default setting. Variants annotated as SNPs according to 

dbSNP 138 (with the exception of TP53 variants that were manually curated and scored as SNPs 

according to the IARC TP53 database), intronic variants mapping >2 bp before the start or after the 

end of coding exons, and synonymous variants were then filtered out. The following strict post-

processing filters were then applied to the remaining variants to further improve variant call 

confidence. Accordingly, variants represented in >10 reads of the paired germline and/or variants 

with a somatic p value from VarScan2 >3.305e-7 [multiple comparisons corrected p threshold=3.305e-

7, corresponding to alpha of 0.05/(37’821 x 4 alleles per position)] were no further considered. Variant 

allele frequencies for the resulting candidate mutations and the background error rate were visualized 

using IGV. Among patients lacking the paired normal gDNA, single nucleotide variations and indels 

were called in tumor gDNA with the cns function of VarScan2. The variants called by VarScan2 were 

annotated by using the SeattleSeq Annotation 138 tool by using the default setting. Variants annotated 

as SNPs according to dbSNP 138 (with the exception of TP53 variants that were manually curated 

and scored as SNPs according to the IARC TP53 database), intronic variants mapping >2 bp before 

the start or after the end of coding exons, and synonymous variants were then filtered out. Only 

protein truncating variants (i.e. indels, stop codons and splice site mutations), as well as missense 

variants not included in the dbSNP 138 and annotated as somatic in the COSMIC v78 database, were 

retained. 

 

Copy number variation analysis  

DNA profiling was performed on DNA samples derived from baseline BM CD19+ purified 

tumor cells using the HumanOmni2.5 arrays (Illumina, San Diego, CA, USA). Copy number status 

of the genes included in the targeted resequencing panel (KMT2D and TP53) was assessed after 

genomic profiles segmentation with the Fast First-derivative Segmentation Algorithm, as previously 

described.8,9 



Minimal residual disease analysis  

For MRD purposes, MCL diagnostic BM and PB samples were investigated for IGH gene 

rearrangements and BCL1/IGH MTC by qualitative PCR. Briefly, IGH were screened using forward 

consensus primers annealing the IGH-V-regions and a reverse primer complementary to the JH 

region. BCL1/IGH MTC translocation was investigated by nested-PCR approach, as described.10-12 

After direct sequencing, FASTA files alignment was performed by IMGT/V-QUEST 

(http://imgt.org) and BlastN tool (NCBI, https://blast.ncbi.nlm.nih.gov/Blast.cgi), in order to define 

rearranged loci nomenclature, chromosomic breakpoints, and to assess patient specific nucleotide 

insertions (N insertions), then used to design allele specific oligonucleotides primers for nested-PCR 

MRD monitoring. Therefore, both BM and PB samples were analyzed for MRD at specific time 

points during and after treatment. 

 

Statistical analysis 

The primary outcome of the clinical study was progression-free survival (PFS). PFS was 

calculated from the date of enrolment into the clinical study to the date of disease progression (event), 

death from any causes (event), or last follow up (censoring).13 Secondary outcomes included overall 

survival (OS), measured from the date of enrolment into the clinical study to the date of death from 

any causes (event), or last follow up (censoring). Time-to-event outcomes (PFS and OS) were 

estimated using the Kaplan-Meier method and compared between groups using the Log-rank test. 

The adjusted effects of mutations and exposure variables (MIPI-c and blastoid variant) on PFS and 

OS were estimated by Cox regression. To compare clinical baseline features between patients 

enrolled in the molecular study and patients not included in the analysis, we used Mann-Whitney test 

for continuous variables and Pearson’s chi-squared test for categorical variables. A Cox model for 

PFS was estimated including MIPI-c and clinically impacting genetic alterations, and an additive 

score was computed according to the proportion between each predictor coefficient and the lowest 

one. The Cox model was internally validated using 1000 bootstrap samples and the C-statistic correct 



for optimism was also provided. Patients were then grouped in classes of risk according to their total 

score using the nonparametric tree modelling technique of classification and regression tree (CART) 

analysis. Statistical analyses were performed using Stata 13.0 and R 3.4.1. The outcome data for the 

present analysis were updated as of December, 2017 the randomization arms being still blinded. 

 

  



SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. Survival analysis for patients enrolled in the MCL0208 clinical trial included and 

not included in the present molecular study.  Kaplan-Meier estimates of progression free survival 

(A) and overall survival (B) of patients with available DNA included in the present molecular study 

(in blue) and of patients without available DNA not included in the present molecular study (in 

yellow). The Log-rank statistics p values are indicated adjacent curves. 

 

Figure S2. Disposition of identified gene mutations across the protein. Mutations identified in the 

studied cohort are plotted above the protein divided into the main domains. Missense mutations are 

plotted in green, stop codon mutations in red, splicing mutations in black, frameshift mutations in 

red, in-frame mutations in yellow.  

 

Figure S3. Prognostic impact of TP53 mutation and TP53 deletion. Kaplan-Meier estimates of 

progression free survival (A) and overall survival (B) of TP53 mutated patients, TP53 deleted 

patients, TP53 mutated and deleted patients, versus wild type patients. Cases with TP53 mutation are 

represented by the yellow line, cases with TP53 deletion are represented by the red line, cases with 

TP53 mutation and deletion are represented by the black line, cases without TP53 mutation and 

deletion are represented by the blue line. The Log-rank statistics p values are indicated adjacent 

curves. 

 

Figure S4. Prognostic impact of NOTCH1 mutation and ATM mutation. Kaplan-Meier estimates 

of (A) progression free survival and (B) overall survival of patients harboring NOTCH1 mutation and 

Kaplan-Meier estimates of (C) progression free survival and (D) overall survival of patients harboring 

ATM  mutation. Cases harboring NOTCH1 or ATM mutation are represented by the yellow line. Wild 



type cases are represented by the blue line. The Log-rank statistics p values are indicated adjacent 

curves.  

 

Figure S5. Prognostic impact of WHSC1 mutation and CCND1 mutation. Kaplan-Meier 

estimates of (A) progression free survival and (B) overall survival of patients harboring WHSC1 

mutations and Kaplan-Meier estimates of (C) progression free survival and (D) overall survival of 

patients harboring CCND1 mutation. Cases harboring WHSC1 or CCND1 mutation are represented 

by the yellow line. Wild type cases are represented by the blue line. The Log-rank statistics p values 

are indicated adjacent curves. 

 
 
Figure S6. Prognostic impact of  BIRC3 mutation and TRAF2 mutation. Kaplan-Meier estimates 

of (A) progression free survival and (B) overall survival of patients harboring BIRC3 mutation and 

Kaplan-Meier estimates of (C) progression free survival and (D) overall survival of patients harboring 

TRAF2 mutation. Cases harboring BIRC3 or TRAF2 mutation are represented by the yellow line. 

Wild type cases are represented by the blue line. The Log-rank statistics p values are indicated 

adjacent curves. 
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Figure S4
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Figure S5
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SUPPLEMENTARY TABLES EXCEL FILE ONLY 

 

Table S1. Target region 
 
Table S2. Somatic non-synonymous mutations discovered in the 186 cases of the molecular study 
 
Table S3. Log-rank univariate analysis in terms of PFS and OS according to mutational status 

 

Table S4. Clinical and biological baseline features of KMT2D and TP53 disrupted patients 
 
Table S5. MRD assessment after ASCT in TP53 disrupted and in KMT2D mutated patients 
 
Table S6. Multivariate analysis of TP53 disruption and KMT2D mutations 
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