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Background and Objective. The AML1 gene was
identified in 1991 by cloning the t(8;21) chromo-
some translocation associated with FAB M2 acute
myeloid leukemia (AML). AML1 encodes a nuclear
transcription factor (TF) which shows homology in
its 5’ part with the Drosophila Melanogaster segmen-
tation gene, runt, and contains a transactivation
domain in the carboxyterminal portion. In the
t(8;21), AML1 is fused to the ETO (MTG8) gene
resulting in a hybrid AML1/ETO mRNA which in
turn is translated into a chimeric protein. The
objective of this article is to review here the main
structural and biological features of AML1 and of
its fusion products, with special focus on their clin-
ical correlations and their potential usefulness for
prognostic and monitoring studies in human
leukemia.

Evidence and Information Sources. The material
examined in the present review includes articles
and abstracts published in journals covered by the
Science Citation Index® and Medline®.

State of Art. The normal AML-1 protein forms
the a-subunit of the heterodimeric TF core binding
factor (or CBF), whose b-subunit is encoded by
the CBFb gene on chromosome 16q22. CBFb is
rearranged and fused to the MYH11 gene in the
AML M4Eo-associated inv(16) aberration. Thus,
the two most common chromosome abnormalities
of AML, i.e. t(8;21) and inv(16), affect the two
subunits of the same target protein. This suggests
that the wild type CBF must exert an important
role in the control of myeloid cell growth and/or
differentiation. Evidence that AML1 is a pivotal
regulator of definitive hematopoiesis has been

recently provided by the analysis of AML1 knock-
out mice. The chromosome region 21q22, where
AML1 maps, is involved in several other karyotypic
aberrations, such as the t(3;21) translocation
associated with a subset of therapy-related
myelodysplastic syndrome and AML, and blastic
phase of chronic myelogenous leukemia. In this
abnormality, three distinct genes EVI1, EAP,
MDS1 located on chromosome band 3q26 have
been identified which may recombine with AML1.
Finally, the recently cloned t(12;21) translocation
has been found to involve the TEL gene (coding for
a novel TF) on 12p13, and AML1 on 21q22. This
alteration, resulting in the production of a
TEL/AML1 chimeric protein, is restricted to pedi-
atric B-lineage acute lymphoid leukemia (ALL)
where it represents the most frequent molecular
defect known to date (up to 25% of cases).
Strikingly, the same t(12;21) is identified in only
0.05% of pediatric B-lineage ALL cases analysed by
conventional karyotyping. Other relevant charac-
teristics of TEL/AML1-positive ALL are the fre-
quent deletion of the other TEL allele, and the cor-
relation with an excellent prognostic outcome.

Perspectives. It is expected that future studies
will provide more detailed information on the
leukemogenic effect of AML1 alterations, and bet-
ter define the prognostic relevance of detecting
the hybrid proteins formed by this gene at diagno-
sis and during remission. 
©1997, Ferrata Storti Foundation
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The characterization of leukemia-associated
chromosome translocations has contributed
relevant insights into our understanding of

leukemia pathogenesis and has provided new spe-
cific tumor markers essential in prognostic assess-
ment and minimal residual disease studies.1-3 In
acute leukemia (AL), the molecular alterations
underlying chromosome translocations are mainly
represented by fusion genes which ultimately code
for chimeric proteins. The genes involved in such

alterations encode proteins normally implicated in
the control of hematopoietic cell growth and differ-
entiation.1,2 Relevant examples of these molecular
lesions include the BCR/ABL, PML/RARa,
E2A/PBX1, ALL/AF4, DEK/CAN, CBFb/MYH11,
and other fusion genes. Experimental models have
been reported for most of such aberrations sup-
porting their involvement in AL pathogenesis.1,2

Cloning of the t(8;21) (q22;q22), the most fre-
quent translocation found in acute myeloid
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leukemia (AML), has led to the identification of a
novel TF named AML1.4,5 In recent years, this gene
has been shown to be involved in several other
chromosome recombinations seen in either myeloid
or lymphoid leukemias (Figure 1).6-20

We will review here the main structural and bio-
logical features of AML1 and of its fusion products,
focusing on their clinical correlations and their
potential usefulness for prognostic and monitoring
studies in human leukemia. 

Cloning and characterization of AML1 and
AML1/ETO

Two groups have independently contributed the
identification of AML1 through strategies including
pulsed-field gel electrophoresis (PFGE), fluores-
cence in situ hybridization (FISH), and generation
of YAC clones spanning the 21q22 breakpoint.4,5

The AML1 cDNA encodes an opening reading
frame of 250 aminoacids, is transcribed from
telomere to centromere, and shows homology in its
aminoterminal region with the Drosophila melano-
gaster segmentation gene, runt21 (this region is often
referred to as runt homology domain, or RHD). At
the 3’ carboxyterminal region, the AML1 gene con-
tains a putative transcription activation domain.
Several differently sized cDNA clones of AML1 have
been found which vary in the region downstream of
the RHD and most likely result from alternative
splicings of the same gene.22 Expression studies
have shown that AML1 is detectable in various tis-
sues including hematopoietic cells.5,6 Two other
genes highly homologous to AML1 have been iden-
tified, AML2 and AML3, which map at chromo-
some bands 1p36 and 6p21, respectively.23 The
AML gene family corresponds to the Cbfa family of
murine TF.24

AML1 encodes the a subunit of the human core
binding factor (CBF), a heterodimeric TF complex
formed by two unrelated polypeptides11 (Figure 2).
Interestingly, the CBFb subunit of this TF is encod-
ed by a gene, CBFb, which is rearranged and fused
to the MYH11 gene in the inv(16) aberration char-
acteristically associated with FAB M4eos. AML.14,15,25

The CBF binds a core DNA sequence, TGTGGT,
present in a number of viral and cellular promoters
and enhancers.26,27 These latter include the promot-
er/enhancer regions of T cell receptor genes, G-
CSF, GM-CSF, myeloperoxidase, IL5 and IL3. A
central part of 118 aminoacids of the 3’ RHD of
AML1 participates directly in binding target DNA,
while the subunit encoded by CBFb contributes to
increase the binding affinity.18

Chromosome 22q breakpoints in the t(8;21)
have been consistently mapped within a single
intron of approximately 25 Kb, where they truncate
the AML1 gene in between its RHD and transacti-
vation domains.4-9 In spite of such breakpoint clus-

tering, Southern blot hybridization studies have fre-
quently failed to detect AML1 rearrangements, even
in t(8;21)-positive AML cases, probably due to the
deletion of DNA fragments complementary to the
probes used, or to co-migration of rearranged and
germline alleles.7,28 As a consequence of the translo-
cation, the RHD of AML1 is conserved and fused
in-frame on the der(8) to the ETO (for eight-twen-
ty-one) gene, also named MTG8.6-9,28-31 This latter,
which is retained almost entirely in the hybrid
cDNA, is a putative transcription factor containing
two zinc finger motifs.28-31 The AML1/ETO fusion
gene retains the ability to dimerize with the CBFb
subunit and to interact with the enhancer core
DNA sequence.10 A scheme illustrating the modular
organization of the normal AML1 and ETO pro-
teins and of the AML1/ETO fusion cDNA is shown
in Figure 3. 

Targeted disruption of the AML1 followed by the
analysis of knockout mice have shown absence of

Figure 1. Schematic representation of AML1 gene involvement
in different chromosome translocations. Genes which recom-
bine with AML1 in each karyotypic aberration are shown after
the arrows.

Figure 2. The core binding factor (CBF) consists of two sub-
units a and b encoded by the AML1 and CBFb genes, respec-
tively. Following the binding of the TGTGGT motif, CBF acts
as a transcriptional activator. Target genes of CBF containing
this specific sequence in their promoter/enhancer regions
include TcR, IL-3, MPO, G-CSF and others. 

The heterodimeric CBF transcription factor
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liver hematopoiesis and hemorrhagic death in
AML1–/– transgenic animals, thereby supporting a
crucial role of this gene in sustaining definitive
hematopoiesis.32,33 Although the leukemogenic
mechanisms of AML1 alterations have not yet been
elucidated, preliminary evidence indicates that
truncation of the gene and/or generation of AML1
fusion proteins may repress myeloid-specific pro-
moters and suppress the transcriptional activation
function of the normal AML1.18

Biological and clinical features of AML1/ETO-
positive AML

By routine karyotyping, the t(8;21) translocation is
detected in 6-8% of all AML cases and in 20-30% of
FAB M2 AML.34 Despite the vast majority (> 90%) of
t(8;21) are reported as M2 AML, this aberration has
also been found, at lower frequencies, in M1 and M4
AML, and in rare cases of myelodysplastic and
myeloproliferative syndromes.35 Morphologically,
t(8;21) AML blasts display characteristic aspects
such as prominent Auer rods, strong myeloperoxi-
dase positivity, hypergranulation and cytoplasmic
vacuolization. Marrow eosinophilia is also a frequent
feature. The immunophenotypic analysis of t(8;21)
AML cells usually disclose CD13/CD33/CD34 and
CD56 expression. Interestingly, positive staining for
the B-cell associated marker CD19 has been reported
in a significant fraction of cases.36

None of the above mentioned morphologic and
immunophenotypic characteristics is per se specific
for t(8;21) AML; however, their combination
strongly suggests the presence of the karyotypic
abnormality and should foster cytogenetic and/or
molecular search of the translocation. Other bio-
logical aspects of t(8;21) AML include the frequent
loss of a sex chromosome, the in vitro potential to
differentiate into neutrophils and eosinophils after
exposure with IL5, and a tendency to form extra-
medullary tumors.37

t(8;21) AML is associated with high remission
rates and prolonged disease-free survival, with a
more favorable overall prognosis than that of the

other AML subsets (with the only exception of FAB
M3 cases). In particular, t(8;21) AML patients are
highly responsive to high-dose cytosine-arabinoside
containing regimens given as consolidation, and
they could therefore be spared the risk of allogeneic
bone marrow transplantation (BMT) in first remis-
sion.38,39 Thus, identification of t(8;21) at diagnosis
is important for prognostic stratification and for
the adoption of tailored treatments. However,
some epidemiological and clinical heterogeneity
has been found comparing adult and childhood
t(8;21) AML. In fact, the incidence of this abnor-
mality is much higher in younger patients (40% vs.
20% in childhood and adult M2 AML, respectively).
Secondly, the prognostic outcome of children
appears less favorable than that of adults.40

After the cloning of the t(8;21), several groups
have developed RT-PCR strategies for rapid molec-
ular diagnosis and monitoring of residual disease.6-

9,28-31 In addition to detecting all cases with the
t(8;21), the RT-PCR method has enabled to unrav-
el the presence of the AML1/ETO in some cases
with normal karyotype. Interestingly, these cytoge-
netically negative AML1/ETO-positive AMLs had
morphologic features strongly reminiscent of
t(8;21) leukemias.41 Presumably, cryptic DNA inser-
tions resulting in micro-translocations account for
these false negative cases. 

As we will discuss below, the TEL-AML1 gene
fusion resulting from the t(12;21) translocation is
the most striking example of hidden chromosome
abnormality, being detectable in the vast majority
of cases only by molecular analysis. Taken together,
these data highlight the increasing need for molecu-
lar screening of chromosome translocations in
human leukemia. 

RT-PCR studies of minimal residual disease in
AML1/ETO-positive AML 

The prognostic role of detecting the presence of
hybrid fusion genes at low levels during hematolog-
ic remission has been extensively studied by RT-PCR
in BCR/ABL-positive leukemias and in PML/RARa-

Figure 3. Simplified scheme of
AML1, ETO and AML1/ETO
cDNAs. The t(8;21) interrupts
AML1 in between its runt and
transactivation domains, while
the ETO gene is left almost intact
by the translocation. Single let-
ters indicate amino acids abun-
dant in specific protein regions.
P, proline; E, glutamic acid; S, ser-
ine; T, threonine. 



positive APL. Although several factors (i.e. timing of
sampling, therapeutic context, sensitivity of PCR
tests) would influence the interpretation of results,
it is commonly accepted that this technology offers
significant advantages over conventional morpho-
logical or immunophenotypic evaluations. In fact,
besides the increased sensitivity, these molecular
strategies can detect tumor-specific lesions, elimi-
nating any doubt regarding presence of residual
malignant cells. In the case of APL, monitoring
studies using RT-PCR provide clinically relevant
data. In fact, PCR positive tests during remission
are strong predictors of subsequent relapse and,
conversely, long-term survivors test PCR negative
for PML/RARa.42 Persistence of residual BCR/ABL-
positive cells has been reported in a high propor-
tion of CML patients in long-term remission,43 but
these studies were mainly confined to patients
treated by allogeneic BMT, i.e. in which a graft-ver-
sus-leukemia effect may exert a control over small
numbers of leukemic cells. In addition, contrary to
APL, CML is an indolent disease until its progres-
sion to blastic phase. 

Nucifora et al. first reported the persistence of
PCR-detectable leukemic cells in AML1/ETO-posi-
tive AML patients in long-term remission.4 4

Surprisingly, these patients had not received allo-
geneic BMT but conventional chemotherapy, and
some of them were off-therapy for > 6-7 years. Such
findings were subsequently confirmed by several
other groups29,45-48 and raised serious concerns on
the clinical usefulness of PCR monitoring studies in
these leukemias. In fact, Jurlander et al.47 reported
the persistence of AML1/ETO transcripts also in
patients in long-term remission after allo-BMT.
Moreover, Miyamoto et al.48 analyzed the expression
of AML1/ETO mRNA in bone marrow clonogenic
progenitors obtained from AML patients off-thera-
py for several years and potentially cured. Their
data demonstrate that multipotent precursors
bearing the t(8;21) translocation persist after long-
term remission.48 Other investigators reported con-
tradicting findings, by demonstrating the presence
of PCR detectable transcripts during the first 1-3
years, subsequent extinction of the leukemic clone
and absence of residual disease during the follow
up.49,50

Based on these data, it has been hypothesized
that additional transforming events, which are
presently unknown, would be required to confer an
aggressive potential to cells bearing the AML1/ETO
aberration. In our opinion, this view is supported
by the evidence that, contrary to PML/RARa, the
AML1/ETO alteration is not unique to an acute
leukemia (i.e. aggressive) phenotype, being also
detected at low frequency in indolent disorders
such as myelodysplastic and myeloproliferative syn-
dromes.35

In the past few years, quantitative PCR methods

have been developed to detect variations in the
amount of chimeric gene transcripts during remis-
sion. These techniques are useful in predicting
relapse in CML.51 Most recently, Tobal et al.52

described the use of a quantitative assay for the
amplification of AML1/ETO and suggested that
this test might provide relevant prognostic informa-
tion. However, in this preliminary study, data corre-
lating the detection of increasing amounts of
AML1/ETO transcript and occurrence of hemato-
logic relapse were only available for two cases.52

Thus, further studies are warranted to determine
the potential usefulness of quantitative RT-PCR in
AML1/ETO positive AML. This implicates the stan-
dardization of techniques and sampling timing in
various laboratories, as well as the evaluation of
MRD results in the context of homogeneous thera-
peutic trials.

Involvement of AML1 in the t(3;21) translocation
The t(3;21) (q26;q22) has been reported as a

rare recurring translocation in therapy-related AML
or MDS, and in accelerated phase or blast crisis of
CML.16,17 The aberration is detected as a secondary
change in Philadelphia-positive CML, being always
associated with myeloid transformation and never
with lymphoid blast crisis.16 Rare cases of de novo
AML with the t(3;21) have also been reported.53

Molecular studies have recently elucidated the
genetic events underlying this translocation. At
least three distinct genes (named EVI1, EAP and
MDS1) which map at 3q26 have been shown to
form alternative fusion products with AML1 in the
t(3;21). In fact, breakpoints at 3q26 may be scat-
tered over considerable distances and involve one
of the three genes spanning a region of at least 400
Kb.18 As for AML1 breakpoints in the t(3;21), these
have been mapped approximately 60 Kb down-
stream of the t(8;21) breakpoint, and usually occur
in intron 5 or 6.18

The entire coding sequence of EVI1, which codes
for a zinc finger DNA-binding protein, is retained
and fused to the RHD of AML1 in the t(3;21). EAP,
which codes for a ribosomal protein, does not
maintain its reading frame in the translocation and
translation of AML1/EAP fusion transcript is termi-
nated by a stop codon shortly after the junction.
MDS1 is a small gene encoding a protein of 170
aminoacids whose normal function is unknown. As
observed in the t(8;21), the RHD of AML1 is trun-
cated from the transactivation domain, and
retained in the fusion with EVI1, EAP or MDS.18

Thus, maintenance of the RHD is a constant fea-
ture of all fusion proteins formed in the t(8;21) and
t(3;21). The chimeric products of both transloca-
tions can act as repressors of the transactivating
function of the normal AML1 over myeloid-specific
promoters. The fact that chimeric transcripts result-
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ing from either the t(8;21) or the (3;21) frequently
contain stop codons in the proximity of the 3’ end
of the RHD suggests that AML1 truncations rather
than its fusion to partner genes may play a key role
in the leukemogenic mechanism.

The molecular organization of AML1/EVI1,
AML1/EAP and AML1/MDS1 is illustrated in Figure 4.

The TEL/AML1 hybrid gene: a hidden 
chromosome translocation

The TEL (translocation ets-like leukemia) gene was
identified following the cloning of the t(5;12)
(q33;p13) present in a subset of chronic myelo-
monocytic leukemia, where it recombines with the
platelet-derived growth factor receptor b (PDGFRb)
gene.54 By conventional karyotyping, alterations in
the 12p12-13 region had been previously described
in up to 10% of childhood acute lymphoblastic
leukemia (ALL).55 Using more sensitive techniques
such as FISH or loss of heterozygosity (LOH) DNA
analysis, 12p12-13 deletions had been reported in
approximately 25% of pediatric ALL.56,57

In 1995, two groups cloned the t(12;21)
(p13;q22) of ALL and found that the TEL gene is
fused in this translocation to AML1.19,20 TEL is a
member of the ETS-like family of TF and contains a
5’ helix-loop-helix (HLH) domain and a carboxy-
terminal DNA-binding region. In the TEL/AML1
hybrid, the translocation fuses the TEL HLH
domain to almost the entire AML1 gene including
its RHD and transactivation regions (Figure 5). In
more than 90% of cases, the fusion gene is
expressed as a TEL/AML1 chimeric RNA and is
detectable by means of an RT-PCR assay.58-64 Thus,
two genes previously known to be involved in
translocations specific for myeloid tumors were
found to be rearranged in a specific subset of ALL. 

The TEL/AML1 abnormality in ALL has been cor-

related with consistent clinical and biological fea-
tures. These include: i) young age at presentation,
i.e. the vast majority of patients are aged between 2
and 10 years; ii) B-lineage features, with blasts usu-
ally staining for TdT, CD10 and CD19, and almost
never for T-cell markers; iii) non-hyperdiploid DNA
content; and iv) excellent response to chemothera-
py and clinical outcome.58-64

According to the reported series, less than 2%
TEL/AML1 positive cases have been described in
adult ALL, a subset in which 25-30% of patients
show the presence of a molecular lesion, the
BCR/ABL fusion gene, associated with poor out-
come. By contrast, no more than 5% of childhood
ALL are BCR/ABL positive. Thus, it is worth noting
that adult and pediatric ALL, two diseases undistin-
guishable on morphologic and immunophenotypic
grounds and yet characterized by a remarkably dif-
ferent prognosis, are quite heterogeneous disorders
if one looks at their molecular pathogenesis. 

Two additional biological features characterizing
the TEL/AML1 lesion merit special consideration.
Firstly, the t(12;21) is detected in only 0.05% of
pediatric ALL by routine karyotyping. Hence, here is
an example of cryptic translocation in which molec-
ular analysis is essential. Secondly, several authors
have described the loss of the nontranslocated TEL
allele in patients with TEL/AML1 rearrange-
ments.20,21 This quite unexpected feature initially
pointed to a possible function of TEL as a tumor
suppressor gene. Most recent data obtained with
FISH analyses rather suggest that TEL deletion
might represent an additional lesion acquired by
the leukemic cells during disease progression. In
fact, the presence of TEL deletion has been report-
ed in leukemic subclones of TEL/AML1 positive ALL
at presentation.60,61 Further, in some cases studied
sequentially either at diagnosis or at relapse, TEL

Figure 4. Simplified scheme of
the molecular organization of
AML1/EVI1, AML1/EAP, and
AML/MDS1 fusion products
resulting from the t(3;21)
translocation. 



deletions were documented at disease recurrence
only.61 Whether this secondary event is associated
with a more aggressive clinical course in this ALL
subset is still unknown.

The recent development of RT-PCR assays for the
TEL/ AML1 hybrid not only allows to rapidly identi-
fy a prognostically relevant marker which is almost
undetectable by karyotyping, but also permits to
sensitively monitor the response to therapy during
the follow-up. However, only few data are currently
available on longitudinal MRD studies in
TEL/AML1 positive ALL. According to these prelim-
inary reports, the majority of patients achieve a
clearance of TEL/AML1 positive cells after 7-8
months of treatment, and PCR positivity detected
during hematologic remission is predictive of clini-
cal relapse.63,64 Therefore, PCR positivity during fol-
low-up may dictate aggressive therapeutic
approaches.65, 66 In the near future a number of
studies currently in progress will define the prog-
nostic relevance of PCR monitoring in TEL/AML1
ALL.

Future perspectives
Studies on the AML1 gene have provided new

important information on the molecular mecha-
nisms involved in leukemogenesis. Furthermore,
novel tumor specific markers are now available to
identify previously unknown genetic subsets within
the heterogeneous spectrum of AL. This should
allow us to better define prognostic AL groups and
to perform minimal residual disease studies in a
greater number of AL. 

The promiscuity of AML1 recombinations, the
frequency of gene involvement, and the phenotypic
heterogeneity of leukemias bearing AML1 alter-
ations are already impressive. Further studies might
still unravel AML1 gene alterations in other
leukemia subsets, and/or AML1 rearrangements
with other known or as yet uncharacterized genes.
Also, additional cryptic translocations might be dis-
covered in other leukemias, hopefully revealing the

molecular lesions of the many leukemias currently
reported as showing a normal karyotype. The unpre-
dictably vast and intriguing scenario disclosed by
investigating AML1 alterations is probably far from
being completed.
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