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strategies than studies based on large numbers of healthy
donors which may be flawed by the great level of noise in
the signals generated with this strategy.
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revised classification of histiocytoses and their
neoplasms was long overdue when members of

the Histiocyte Society suggested dividing them

into five groups, designated L (Langerhans cell), C
(Cutaneous), M (Malignant), R (Rosai-Dorfman), and H
(Hemophagocytic) (Figure 1).! As an example, the L
group, which includes Langerhans cell histiocytosis and
Erdheim Chester disease, is characterized by mutations
in the MAPK pathway and BRAF V600E. In contrast his-
tiocytic sarcomas in the M group remain an elusive cate-
gory. These rare and highly malignant neoplasms occur at
all ages, and frequently involve extranodal sites including
skin, soft tissues, and the gastrointestinal tract. There are
few objective criteria for diagnosis other than expression
of histiocyte markers (CD68, CD163, CD4, lysozyme,
CD21, CD35, S100) and exclusion of other tumors by a
panel of antibodies including, but not limited to, S100,
keratins, EMA, Melan-A, HMB45, and B- and T-lymphoid
markers.” Further complications arise in the apparent
plasticity between histiocytic sarcomas and other malig-
nancies, such as follicular lymphomas, demonstrated by
translocations, immunoglobulin gene rearrangements, or
mutational analysis.® Because of these pitfalls, histiocytic
sarcoma has been vastly over diagnosed, with mimics
including T-cell and other lymphomas with histiocyte-

rich backgrounds, and, in particular, CD30 positive
anaplastic large cell lymphomas. Clearly, any progress in
diagnosing and treating these aggressive neoplasms will
depend on identifying specific molecular and other mark-
ers for their accurate diagnosis.

Until recently, molecular analysis of histiocytic sarco-
mas has given confusing results, and there have been no
consistent cytogenetic abnormalities. Mutations involving
the RAS-MAPK signaling pathway, BRAF V600E muta-
tions, as activation of PI3K and the tumor suppressor gene
CDKNZ2A* have been most frequently reported, and there
have been no reports of ALK translocations. Some cases,
particularly in patients with associated B-cell lymphomas,
have demonstrated immunoglobulin heavy or light chain
gene rearrangements.

In this issue of Haematologica, Egan et al. performed
genomic profiling of 21 primary histiocytic sarcomas, and
in addition to confirming frequent alterations in the
RAS/MAPK pathway, identified a novel intra-chromoso-
mal transcript between exon 12 of TTYHS3 and exon 8 of
BRAF on chromosome 7. Moreover, differential expres-
sion analysis identified two distinct molecular subgroups
with distinct molecular profiles and associated clinical
characteristics based on the presence or absence of
NF1/PTP11 mutations.” Cases that had NF1/PTPN11
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Figure 1. Clinical, immunophenotypic, and molecular changes in histiocytic sarcoma and relation to other histiocytoses. LCH: Langerhans cell histiocytosis; HLH:
hemophagocytic lymphohistiocytosis; RDD: Rosai Dorfman Disease; ECD: Erdheim-Chester disease.

mutations had a predilection for gastrointestinal tract
involvement. This group was characterized by loss of
gene sets related to cellular proliferation and the cell cycle.
Further data suggest that a subset of these cases involve
co-occurring NF1 and PTPN11 mutations, suggesting that
activating mutations of PTPN11 may synergize with NF1
mutations to potentiate oncogenesis. None of these cases
had abnormalities in genes associated with B-cell Iym-
phomas, besides SETD2, or had B-cell-related gene
rearrangements.

In contrast, cases with wild-type NF1/PTP11 had
RAS/MAPK pathway activating mutations, and were
unrelated to site of presentation, and had activating muta-
tions involving KRAS, NRAS, BRAE and MAP2K1. This
group alone demonstrated an association with
immunoglobulin gene rearrangements and genes associat-
ed with B-cell lymphomas, including BCL2 rearrange-
ment. This molecular profile offers an intriguing insight
into the relationship between histiocytic sarcoma and B-
cell lymphoma. The ability to identify subsets of histio-
cytic sarcoma according to their molecular profiles offers a
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potential for improvement in the diagnosis and targeted
therapy of these neoplasms that has so far foiled conven-
tional pathological examination.
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