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1. Supplementary Materials and Methods 

 

1.1 Multi-amplicon deep sequencing 

 
Multi-amplicon deep sequencing (TruSeq; Illumina) was performed for 70 gene targets, according 

to the manufacturer’s instructions (Illumina) (Supplementary Figure 1; Supplementary Table 1). 

TruSeq custom amplicon generation protocol was applied to customized probe sets to amplify 

target exons and whole exons of target genes. The sequencing libraries were generated according 

to an Illumina pair-end library protocol and subjected to deep sequencing on MiSeq (Illumina) 

sequencers according to the standard protocol.1-4 Subsequent validation and confirmatory 

sequencing are described as below (Supplementary Figure 1). 

 
1.2 Confirmatory Sanger sequencing and deep sequencing 

 
Exons of selected genes were amplified and underwent direct genomic sequencing by standard 

techniques on the ABI 3730xl DNA analyzer (Applied Biosystems, Foster City, CA), as previously 

described.5,6   All mutations were detected by bidirectional sequencing and scored as pathogenic 

if not present in non-clonal paired GL DNA. When the marginal volume of mutant clone size was 

not confirmed by Sanger sequencing, cloning and sequencing individual colonies ( TOPO TA 

cloning, Invitrogen, Carlsbad, CA) was performed for validation. For detecting allelic frequency of 

mutations or SNPs, we applied deep sequencing to targeted exons as previously described. 7 

Briefly, we analyzed for possible or validated mutations amplicons of around 250 bps, targeting 

the locus with each specific primer pair. The sequencing libraries were generated according to an 

Illumina pair-end library protocol and subjected to deep sequencing on HiSeq2000 or MiSeq 

sequencers according to the standard protocol (Illumina).7, 8    

 
1.3 Detection of molecular defects by SNP-A 

 
Single nucleotide polymorphism (SNP)-array karyotyping for confirming metaphase cytogenetics 

and detecting copy-number normal loss of heterozygosity was performed as previously 

described.8, 9  Briefly, Affymetrix 250K and 6.0 SNP-arrays were used to evaluate copy number and 

loss of heterozygosity. Using our internal and publicly available databases, the screening 

algorithm validated each lesion as somatic 5, 6. Non somatic lesions were excluded for further 

analysis. 10 Affected genomic positions in each lesion were visualized and extracted by CNAG (v3.0) 

or the Genotyping Console (Affymetrix) software.  
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1.4 Adjustment of variant allele frequency 
 

Variant allelic frequencies (VAFs) of mutations were adjusted according to the zygosity and copy 

number confirmed by SNP-array. VAF of homozygous mutations as well as mutations of the 

genes located on chromosome X in the male cases were reduced to the half value of raw data. 

Hemizygous mutation VAFs were adjusted based on the formula as “Adjusted VAF = a/1+a (a = 

raw VAF value).” These adjustments of VAF were not required for heterozygous mutations. The 

adjusted VAF value of each mutation was categorized into large and small size dichotomized by 

mean VAF of all the identified mutations (Supplementary Table 2). 

 

1.5 Distinction of founder and subclonal mutations 

For distinction between ancestral and secondary mutations present in each case, we used the 

following criteria: 1.) In serial analyses, mutations appearing in progression but not present 

initially were deemed subclonal; 2.) In each case, VAFs of significant mutations adjusted by copy 

number variations and zygosity were compared and the largest clone was deemed founder in that 

case.11,12 Cases without conclusive founder mutation (co-dominant) were excluded from further 

analyses (Supplementary Table 3). For distinction between ancestral or sub-clonal genes on the 

population level, we applied a ranking approach wherein, for each mutation, the proportion of 

cases in which that mutation was ancestral was calculated and the values compared to select the 

most likely ancestral events.  

 
 

 

 

 

 

 

 

 
 

 

 



5 
 

2. Supplementary Tables 

Table S1. Genes tested in Next Generation Sequencing 

    Gene Name     

APC DDX54 IDH1 NOTCH1 SF3B1 

ASXL1 DHX29 IDH2 NPM1 SIMC1 

BCOR DNMT1 IRF4 NRAS SMC3 

BCORL1 DNMT3A JAK2 NSD1 SRSF2 

BTRC EED JAK3 OGT STAG2 

CALR ERBB4 KDM6A PHF6 STAT3 

CBL ETV6 KIT PRPF40B SUZ12 

CCDC42B EZH2 KRAS PRPF8 TET1 

CDH23 FLT3 LUC7L2 PTCH1 TET2 

CEBPA GATA2 MECOM PTPN11 TP53 

CFTR GLI1 MED12 RAD21 U2AF1 

CSF1R GLI2 MLL RNF25 U2AF2 

CUX1 GNB1 MPL RUNX1 WT1 

DDX41 GPR98 NF1 SETBP1 ZRSR2 

 

Table S2. Adjustment of Variant Allele Frequency 

Mutation type Adjustment performed 
Homozygous   VAFadjusted=0.5(VAFraw) 

Found on X chromosome in males VAFadjusted=0.5(VAFraw) 
Hemizygous VAFadjusted= VAFraw/1+VAFraw 

Heterozygous VAFadjusted=VAFraw 
 

Table S3. Definitions of Ancestral versus Secondary Mutations  

 

 

Mutation type Criteria for definition 

Ancestral (Dominant) In serial sampling, appear as largest adjusted VAF 
in first sampling 
 
Largest adjusted VAF 

Co-dominant Adjusted VAF within 5% of Dominant  
(VAFadjusted co-dominant < VAFadjusted dominant -5%) 

Secondary (Subclonal) In serial sampling, appear at second sampling but 
not first  sampling 
 
>5% difference between Dominant  
 (VAFadjusted subclonal <VAFadjusted dominant – 5%) 
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Table S4. Clinical Characteristics of Sequenced Cases 

  pMN (n=683) sMN (n=65) tMN (n=145) 

Demographics    
Median age (years)  at primary malignancy diagnosis 
(range) 64 (9-88) 60 (21-79) 60 

Median age (years)  at MN diagnosis (range) 64 (9-88) 71.5 (47-92) 68 † ‡  

Median latency (years) NA 8 7 

Sex- Female: Male (%) 
272:411 

(40%:60%) 
17: 48               

(26%: 74%) 
78:67         

(54%:46%) * † ‡  

Presentation    
MN presentation as advanced disease 328 (48%) 33 (51%) 75 (52%)  

MN presentation as non-advanced disease 355 (52%) 32 (49%) 70 (48%)  

Cytogenetics    
Normal 311 (46%) 32 (49%) 53 (37%) † ‡  

Complex         111 (16%) 5 (8%) 35 (24%) * † ‡  

del5 94 (14%) 4 (6%) 22 (15%) 

del7/-7 84 (12%) 7 (11%) 36 (25%) * † ‡  

del17 22 (3%) 1 (2%) 9 (6%) 

del20 63 (9%) 3 (5%) 12 (8%) 

trisomy 8 62 (9%) 3 (5%) 17 (12%) 

delY 24 (4%) 2 (3%) 3 (2%) 

Family history of cancer    
1st degree 280 (41%) 32 (49%) 63 (43%) 

2nd degree              79 (12%) 4 (6%) 23 (16%) 

1st and 2nd degree 70 (10%) 8 (12%) 22 (15%) 

Total family history 429 (63%) 44 (68%) 108 (74%) † ‡  

        

1st degree- hematologic 57 (8%) 7 (11%) 17 (12%) 

2nd degree- hematologic 28 (4%) 1 (2%) 4 (3%) 

1st and 2nd degree-hematologic 8 (1%) 2 (3%) 2 (1%) 

Total family history- hematologic 93 (13%) 10 (16%) 23 (16%) 

Top 3 primary malignancies    
Primary malignancy 1 NA Prostate, 17 (26%) Breast, 50 (34%)* 

Primary malignancy 2                NA 
Colorectal, 11 

(17%)* NHL, 28 (19%)* 

Primary malignancy 3 NA Breast, 10 (15%)* Prostate, 24 (17%) 
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Table S5. Chemotherapy types used for treatment of a primary malignancy 

  Total tMN Ctx only Ctx+Rtx Rtx only 

n total 266 87 90 89 

Ctx treatment type unknown 59 28 31 NA 

Ctx treatment type known 118 59 59 NA 

Ctx type- Alkylating 94 (80%) 47 (80%) 47 (80%) NA 

Ctx type- Topoisomerase II 31 (26%) 19 (32%) 12 (20%) NA 

Ctx type- Other 111 (91%) 60 (97%) 51 (85%) NA 

 

Table S6. Mutations enriched in sMN 

Gene sMN vs. pMN p   sMN vs. tMN p   tMN vs. pMN p 

SRSF2 1.9967 0.0439  2.1667 0.0776  0.9216 0.88418 

PHF6 4.8596 0.005   2.3559 0.1959   2.06027 0.2286 

CUX1 3.0787 0.0417  2.333 0.2905  1.3194 0.7822 

IDH1 3.0787 0.0417   12 0.0115   0.26 0.2243 

IDH2 1.3396 0.581  3.944 0.0619  0.3396 0.0644 

SF3B1 1.0915 0   3.3793 0.0508   0.323 0.0144 

ZRSR2 2.2934 0.1123  3.5847 0.072  0.6398 0.41916 

PTPN11 1.8817 0.2828   4.6885 0.0753   0.4013 0.2871 

 

Table S7. Ages and latencies (in years) of CHIP and de novo tMN patients 

 CHIP-derived De novo- derived p average   p median  
Average age at 
primary malignancy 
diagnosis (median 
age) 

62 (63) 53 (53) 0.0175 0.0238 

Average age at 
Myeloid Neoplasm 
Diagnosis (median 
age) 

71 (70) 63 (64) 0.019 0.025 

Average latency 
from primary 
malignancy to 
myeloid malignancy 
(median latency) 

9 (7) 11 (7) 0.739 0.506 
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3. Supplementary Figures 

Figure S1. Bioanalytical Algorithm 

 

 

 

 



9 
 

Figure S2. Common Mutations tested in pMN 

 

 

Figure S3. Common Mutations tested in sMN 
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Figure S4. Common Mutations tested in tMN 
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Figure S5. Disease Categorization of pMN, sMN, and tMN 
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Figure S6. Categorization of MDS cases by 2016 WHO criteria 
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Figure S7. Classification of MDS/MPN cases by 2016 WHO criteria 
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Figure S8. Classification of AML cases by 2016 WHO criteria 
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Figure S9. Effect of mutation or MN status on overall survival of EZH2 and TP53-mutated tMN patients 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

Figure S10. Relationship between pMN and CHIP 

 

 

Figure S11. Relationship between sMN and CHIP 
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Figure S12. Estimation of Mutation Derivation 

 

Figure S13.  Schematic of origin of CHIP mutations in tMN 
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