The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation

Fabrice Chatonnet,^{1,2,\$} Amandine Pignarre,^{1,2,\$} Aurélien A. Sérandour,^{3,4-5,\$} Gersende Caron,¹⁻² Stéphane Avner,⁶ Nicolas Robert,⁷ Alboukadel Kassambara,⁸ Audrey Laurent,⁶ Maud Bizot,⁶ Xabier Agirre,⁹ Felipe Prosper,⁹ José I. Martin-Subero,¹⁰ Jérôme Moreaux,^{7,8} Thierry Fest,^{1,2} and Gilles Salbert⁶

¹Université Rennes 1, Établissement Français du Sang de Bretaggne, Inserm, MICMAC - UMR_S 1236, Rennes, France; ²Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France; ³CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; ⁴Ecole Centrale de Nantes, Nantes, France; ⁵Institut de Cancérologie de l'Ouest, Site René-Gauducheau, Saint-Herblain, France; ⁶SPARTE, IGDR, CNRS UMR6290, University Rennes 1, Rennes, France; ⁷Department of Biological Hematology, CHU Montpellier, Montpellier, France; ⁸IGH, CNRS, Univ Montpellier, France; ⁹Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain and ¹⁰IDIBAPS, Barcelona, Spain

\$FC, AP and AAS are co-first authors.

©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.222133

Received: March 15, 2019. Accepted: June 19, 2019. Pre-published: June 20, 2019. Correspondence: *GILLES SALBERT* - gilles.salbert@univ-rennes1.fr *THIERRY FEST* - thierry.fest@univ-rennes1.fr *JÉRÔME MOREAUX* - jerome.moreaux@igh.cnrs.fr

The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation

Fabrice Chatonnet,^{1,\$} Amandine Pignarre,^{1,\$} Aurélien A Sérandour,^{2-3-4,\$} Gersende Caron,¹ Stéphane Avner,⁵ Nicolas Robert,⁶ Alboukadel Kassambara,⁷ Audrey Laurent,⁵ Maud Bizot,⁵ Xabier Agirre,⁸ Felipe Prosper,⁸ José I Martin-Subero,⁹ Jérôme Moreaux,^{6-7,*} Thierry Fest,^{1,*} and Gilles Salbert^{5,*}

¹Université Rennes 1, CHU Rennes, Inserm, MICMAC - UMR_S 1236, F-35000 Rennes, France.

²CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France

³Ecole Centrale de Nantes, Nantes, France

⁴Institut de Cancérologie de l'Ouest, Site René-Gauducheau, Saint-Herblain, France

- ⁵SPARTE, IGDR, CNRS UMR6290, University Rennes 1, Rennes, France
- ^bDepartment of Biological Hematology, CHU Montpellier, Montpellier, France

⁷IGH, CNRS, Univ Montpellier, France

⁸Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.

⁹IDIBAPS, Barcelona, Spain

SUPPLEMENTAL DATA

SUPPLEMENTAL METHODS

Human Myeloma Cell Lines (HMCLs)

XG human myeloma cell lines were obtained as previously described.¹ 1 HMCLs were cultured in the presence of recombinant IL-6. HMCLs were authenticated according to their short tandem repeat profiling and their gene expression profiling using Affymetrix U133 plus 2.0 microarrays deposited in the ArrayExpress public database under accession numbers E-TABM-937 and E-TABM-1088.¹

Construction of HMCLs overexpressing FAM72D

FAM72D cDNA was cloned in the pLenti4-mGFP-Tagged cloning vector (Origene). HMCLs were transduced with *FAM72D* lentiviruses (MOI = 2) and stable transduced cells were obtained after selection using cell sorter. HMCLs transduced with control lentiviruses were used as control.^{2,3}

Cell growth assay

HMCLs were cultured for 4 days in RPMI 1640 medium, 10% FCS, and 2 ng/ml IL-6 (control medium) in the presence or absence of graded concentrations of FDI-6 (Sigma). HMCLs overexpressing or not FAM72D were then IL-6- and serum-starved for 2 hours and cultured for 4 days in 96-well flat-bottom microtiter plates in serum-free culture medium without cytokine (control) or with graded concentrations of IL-6 as described.^{4,5} Cell growth was evaluated by quantifying intracellular ATP amount with a Cell Titer Glow Luminescent Assay (Promega, Madison, WI, USA) using a Centro LB 960 luminometer (Berthold Technologies, Bad Wildbad, Germany).

Sensitivity of primary myeloma cells to HDACi/DNMTi combination

Primary myeloma cells of 17 patients were cultured with or without 2 μM 5azacitidine and 300 nM SAHA (Sigma). MMC cytotoxicity was evaluated using anti- CD138-PE monoclonal antibody (Immunotech, Marseille, France) as described.⁶

Identification of genes deregulated by the HDACi/DNMTi combination

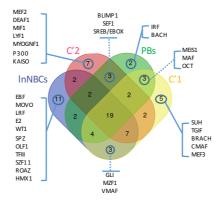
HMCLs were treated with 0.5 μmol/L decitabine (Sigma, St Louis, MO) for 7 days in RPMI 1640, 10% fetal bovine serum supplemented with IL-6 for IL-6-dependent HMCLs. During the last 24 h, 0.33 μmol/L trichostatin A (TSA; Sigma) was added as described.⁶ Whole-genome GEP was assayed with Affymetrix U133 2.0 plus microarrays (Affymetrix).

Knock-down of FAM72D in MCF-7 cells and mitotic defect analysis

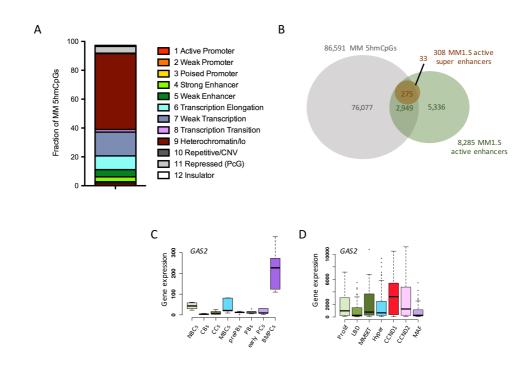
For siRNA experiments, MCF-7 cells were plated in 6-well plates (250,000 cells/well) in DMEM supplemented with 10% fetal calf serum and antibiotics. After 24 hours, cells were switch to opti-MEM medium and transfected for 6 hours with 10 nM of control or FAM72D siRNAs (Cohesion Biosciences, ref CRJ8695) diluted in opti-MEM and oligofectamine (Thermo Fischer Scientific). After transfection, cells were further cultured for 48 hours in DMEM supplemented with 10% serum before processing either for RT-qPCR or mitotic defect analysis. Total RNAs were extracted with TRIzol (Invitrogen) and reverse-transcribed with M-MLV reverse transcriptase (Invitrogen) and Pd(N)6 random hexamers (Amersham Pharmacia Biosciences). Analysis of the efficiency of the siRNAs to knock-down FAM72D was assessed by qPCR using SYBR green master mix (Biorad) and the following oligonucleotides: FAM72D forward: 5'-tgtgattgttccatgtagttcct-3', FAM72D reverse: 5'-actctttctatctctggcaagt-3',

FOXM1 forward: 5'-gccatcaacagcactgagag-3', FOXM1 reverse: 5'-tggggtgaatggtccagaag-3', NUF2 forward: 5'gccgggtgaatgactttgag-3', NUF2 reverse: 5'-tttcacggcatgcttctctg-3'. For phenotypic analysis, cells grown on coverslips were fixed with 4% paraformaldehyde for 10 minutes and permeabilized for 15 minutes in 0.2% Triton X-100 in PBS. Cells were next mounted in Vectashield medium (VECTOR Laboratories) containing DAPI. All experiments were run in triplicates and repeated 3 times. A total of 180 anaphases were monitored for lagging chromatids, 180 metaphases for misaligned chromosomes, and 1,800 cells for micronuclei in both control and FAM72D siRNA conditions.

REFERENCES


- 1. Moreaux J, Klein B, Bataille R, et al. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica. 2011;96(4):574-82
- Kassambara A, Schoenhals M, Moreaux J, et al. Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells. PLoS One. 2013;8(4):e62752
- 3. Viziteu E, Klein B, Basbous J, et al. RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma. Leukemia. 2017;31(10):2104-13
- 4. Sprynski AC, Hose D, Caillot L, et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood. 2009;113(19):4614-26
- 5. Sprynski AC, Hose D, Kassambara A, et al. Insulin is a potent myeloma cell growth factor through insulin/IGF-1 hybrid receptor activation. Leukemia. 2010;24(11):1940-50
- 6. Bruyer A, Maes K, Herviou L, et al. DNMTi/HDACi combined epigenetic targeted treatment induces reprogramming of myeloma cells in the direction of normal plasma cells. Br J Cancer. 2018;118(8):1062-73

SUPPLEMENTAL FIGURES S1 to S10 (pages 5 to 14)


		L.
4	L	۱
,		1

oxBS-450K		SCL-exo		SCL-seq	
GO Biological Process	raw P-value	GO Biological Process	raw P-value	GO Biological Process	raw P-value
antigen processing and presentation of	3.6860e-36	apoptotic signaling pathway	0.0000	cytokine-mediated signaling pathway	1.1114e-306
exogenous peptide antigen via MHC class I		response to endoplasmic reticulum stress	0.0000	immune response-activating cell surface	2.0178e-212
antigen processing and presentation of	6.0225e-36	immune response-activating cell surface	5.7229e-308	receptor signaling pathway	
exogenous peptide antigen via MHC class I,		receptor signaling pathway		intrinsic apoptotic signaling pathway	7.1023e-199
TAP-dependent		Notch signaling pathway	1.7355e-284	response to endoplasmic reticulum stress	1.1773e-172
Mouse Phenotypes	raw P-value	Mouse phenotypes	raw P-value	Mouse phenotypes	raw P-value
No terms		abnormal B cell differentiation	0.0000	abnormal B cell differentiation	0.0000
		abnormal B cell proliferation	0.0000	abnormal B cell proliferation	0.0000
		abnormal mature B cell morphology	0.0000	abnormal mature B cell morphology	0.0000
		increased hemolymphoid system tumor	0.0000	abnormal hematopoietic system physiology	0.0000
		incidence		abnormal lymph node size	0.0000
Disease Ontology	raw P-value	Disease Ontology	raw P-value	Disease Ontology	raw P-value
No terms		chronic leukemia	0.0000	herpes simplex	4.9466e-115
		dsDNA virus infectious disease	0.0000	Hodgkin's lymphoma	1.3254e-84
		chronic lymphocytic leukemia	0.0000	progressive multifocal leukoencephalopathy	2.2362e-76
		head and neck squamous cell carcinoma	0.0000		
MSigDB Pathway	raw P-value	MSigDB Pathway	raw P-value	MSigDB Pathway	raw P-value
No terms		Genes involved in Signaling by NOTCH	0.0000	Genes involved in Cytokine Signaling in Immune	1.2445e-262
		C-MYB transcription factor network	0.0000	system	
		Cell cycle	0.0000	Genes involved in Signaling by NOTCH	3.2818e-181
		IL2-mediated signaling events	0.0000	Genes involved in Unfolded Protein Response	3.3832e-153
		Regulation of nuclear SMAD2/3 signaling	1.4831e-275	p38 MAPK signaling pathway	1.7645e-138
		Genes involved in Signaling by SCF-KIT	3.0805e-274	Regulation of nuclear SMAD2/3 signaling	7.1719e-127
		Caspase cascade in apoptosis	4.4654e-267	Genes involved in Signaling by SCF-KIT	2.5653e-126
		Chronic myeloid leukemia	4.2969e-265	IFN-gamma pathway	1.6899e-118
		MAPKinase Signaling Pathway	2.1543e-252	Validated targets of C-MYC transcriptional	3.2832e-118
		Regulation of Telomerase	1.6354e-237	repression	
MSigDB Perturbation	raw P-value	MSigDB Perturbation	raw P-value	MSigDB Perturbation	raw P-value
Genes within amplicon 16q24 identified in a	5.0686e-320	Genes down-regulated in multiple myeloma	0.0000	Genes down-regulated in multiple myeloma	0.0000
copy number alterations study of 191 breast		(MM) cell lines treated with both decitabine		(MM) cell lines treated with both decitabine	
tumor samples.		[PubChem=451668] TSA [PubChem=5562].		[PubChem=451668] TSA [PubChem=5562].	
Genes within amplicon 7p22 identified in a copy	2.1938e-173	Genes down-regulated in the MM1S cells	0.0000	Up-regulated genes in B-CLL (B-cell chronic	0.0000
number alterations study of 191 breast tumor		(multiple myeloma) after treatment with aplidin		leukemia) patients expressing high levels of	
samples.		[PubChem=44152164], a marine-derived		ZAP70 and CD38 [GeneID=7535;952], which are	
Genes within amplicon 17q21-q25 identified in a	6.2204e-97	compound with potential anti-cancer properties.		associated with poor survival.	
copy number alterations study of 191 breast		IRF4 [GeneID=3662] target genes up-regulated	0.0000	IRF4 [GeneID=3662] target genes up-regulated	0.0000
tumor samples.		in primary myeloma vs. mature B lymphocytes.	0.0000	in primary myeloma vs. mature B lymphocytes.	0.0000
		Genes up-regulated in plasma cells compared	0.0000	Genes up-regulated in plasma cells compared	0.0000
		with B lymphocytes.		with B lymphocytes.	
		The 'MLL signature 1': genes up-regulated in	0.0000	The 'MLL signature 1': genes up-regulated in	0.0000
		pediatric AML (acute myeloid leukemia) with		pediatric AML (acute myeloid leukemia) with	
		rearranged MLL [GeneID=4297] compared to all		rearranged MLL [GeneID=4297] compared to all	
		AML cases with the intact gene.		AML cases with the intact gene.	

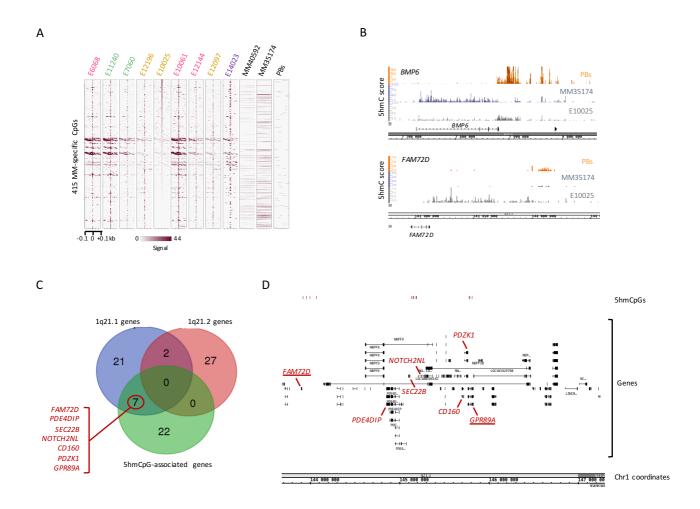
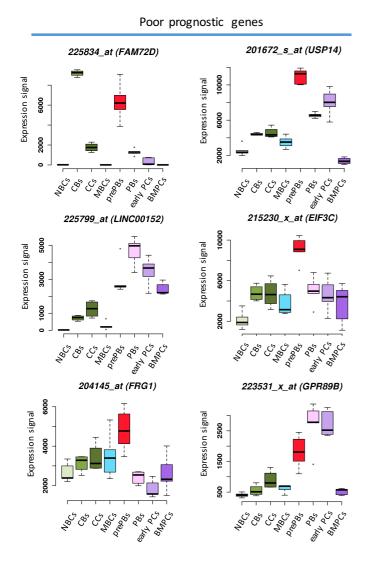
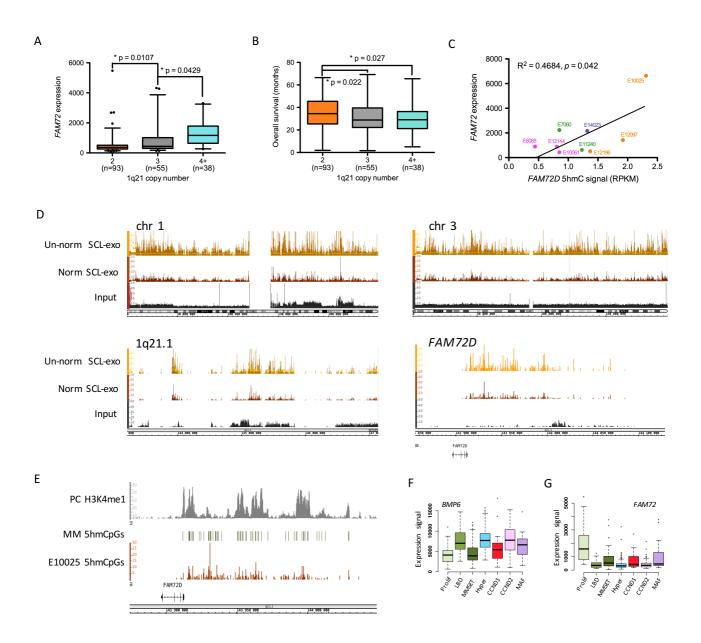
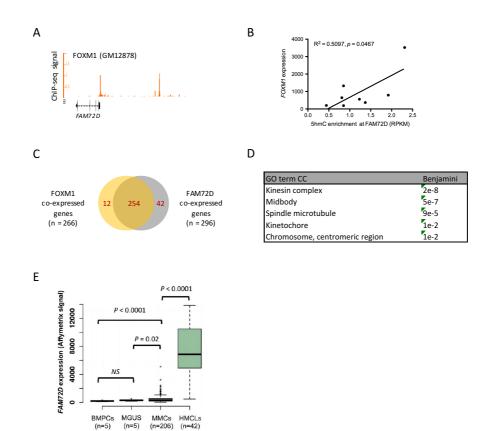

В

Figure S1: SCL-exo and SCL identify active genomic regions in MM patients. (A) Aggregated 5hmC positive regions (40,586 CpGs for oxBS-450K; 86,591 CpGs for SCL-exo; 64,424 regions for SCL-seq) were annotated using GREAT with default settings. (B) C'1 and C'2 subgroup-specific sets of 5hmCpGs obtained through heatmap clustering were analyzed for the presence of transcription factor binding motifs in their vicinity. Sets of significantly enriched (p<0.05) motifs were compared to motifs enriched in lymph node NBCs and PBs through a Venn diagram.

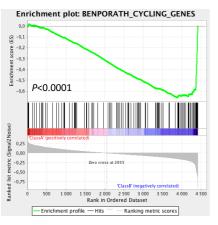
Figure S2: SCL-exo and SCL identify active genomic regions in MM patients. (**A**) Association of the MM 5hmCpGs with chromatin states (ChromHMM) from the GM12878 lymphoblastoid cell line. (**B**) Venn diagram analysis of the distribution of MM 5hmCpGs in genomic regions identified as active enhancers and active super enhancers (SEs) in MM1.S cells. (**C**) *GAS2* expression levels in normal cells: naive B cells (NBCs), centroblasts (CBs), centrocytes (CCs), memory B cells (MBCs), pre-plasmablasts (prePBs), plasmablasts (PBs), early plasma cells (early PCs), and bone marrow plasma cells (BMPCs). Graphs were generated by GenomicScape (http://genomicscape.com/). (**D**) *GAS2* expression levels in MMPCs from patients of the Arkansas cohort (n=414) classified in the following molecular groups: proliferation (Prolif), low bone disease (LBD), MMSET, hyperdiploid (Hyper), CCND1, CCND2, and MAF.

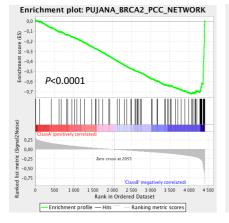
Figure S3: The 1q21.1 region is enriched in 5hmCpG-associated genes. (**A**) Heatmap of the 5hmC signal at 415 MM-specific 5hmCpGs. (**B**) Integrated genome browser (IGB) view of the 5hmC signal at the *BMP6* and *FAM72D* loci in PB (orange), MM35174 (dark blue) and E10025 (grey) samples. (**C**) Venn diagram comparing the list of genes associated with 5hmC and those located at 1q21.1 and 1q21.2. (**D**) Genomic organization of the 1q21.1 cytoband. Genes associated with 5hmC are indicated in red font.

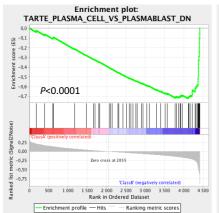



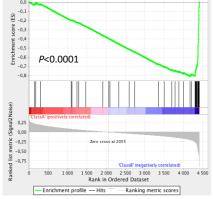

Figure S4: Expression levels of identified poor and good prognosis genes in different states of B cell differentiation. Box plots show gene expression in naive B cells (NBCs), centroblasts (CBs), centrocytes (CCs), memory B cells (MBCs), pre-plasmablasts (prePBs), plasmablasts (PBs), early plasma cells (early PCs), and bone marrow plasma cells (BMPCs). Graphs were generated by GenomicScape (http://genomicscape.com/).

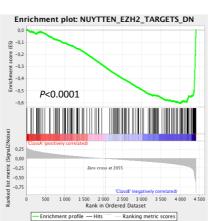
Chatonnet et al., Supplemental Fig. S4

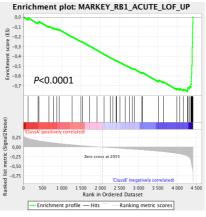

Good prognostic genes 202443_x_at (NOTCH2) 206176_at (BMP6) 6000 1500 Expression signal Expression signal 4000 1000 2000 500 0 0 So These 8MDCS 118C Drep₈ So The 8Mor NBC. Drep_{Bs} VBC. 198C. dy dy Å ç 209501_at (CDR2) 215123_at (NPIPB5) 1400 Expression signal Expression signal 5000 1000 3000 600 8 200 Sor Les So Theo NBCS . Drep₈ Supp ે જે 8MOC ී 198^C DrepBy 18C. ੴ ç ð 222290_at (OR2A20P) 215549_x_at (CTAGE4) 250 400 Expression signal Expression signal 200 300 150 200 9 8 20 0 0 So The MBC SOM Drep₈ BUDG NBC SON ، م^ن 8Mo Diep BS 49^C ථ 180. 180. Ś Ś ئى ੴ The 214129_at (PDE4DIP) 1558290_a_at (PVT1) 6000 Expression signal Expression signal 800 4000 600 400 2000 200 0 Contraction PCS + DrepBS + BUDG NBCS ىئ MBC Dreps. BUND ඵ ී 2 2 2 S 18 18 Theo 204961_s_at (NCF1C) 238412_at (RRN3P3) Expression signal Expression signal 3000 1500 2000 00 1000 500 So Theo Drep85 8Mor 49°C NBCS Drep₈ , No C ð ඵ 9 à ල් Š ' Theo 214257_s_at (SEC22B) 1557289_s_at (GTF2IRD2B) 2 Expression signal Expression signal 15000 20 8 0000 6 Dreps-8 NoCS NBCS 180°S \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ Sa Les Sent B ල්

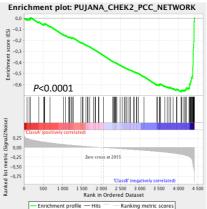



Figure S5: (**A**) *FAM72* expression in patients from the Arkansas cohort with 2, 3 or 4 and more (4+) copies of 1q21. (**B**) Overall survival of patients from the Arkansas cohort with 2, 3 or 4 and more (4+) copies of 1q21. (**C**) Correlation analysis of *FAM72D* hydroxymethylation (RPKM: reads per kb per million reads) and *FAM72* expression levels in MM patients. (**D**) Integrated genome browser (IGB) snapshots showing input-seq, un-normalized and normalized SCL-exo signals, along the full chromosome 1 (chr1) and 3 (chr3), as well as close up views of 1q21.1 and the *FAM72D* locus. (**E**) IGB snapshot showing H3K4me1 signal form normal plasma cells (PC H3K4me1), the presence of highly significant MM 5hmCpGs, and the SCL-exo signal from E10025 at the *FAM72D* locus. (**F**) *BMP6* expression levels in the different molecular subgroups from the Arkansas cohort. (**G**) *FAM72* expression levels in the different molecular subgroups from the Arkansas cohort.

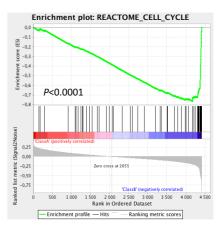

Figure S6: *FAM72* is part of *FOXM1* network. (A) IGB view of FOXM1 ChIP-seq signal at the *FAM72D* locus in GM12878 lymphoblastoid cells. (B) Correlation analysis of *FAM72D* hydroxymethylation (RPKM: reads per kb per million reads) and *FOXM1* expression levels in MM patients. (C) Venn diagram showing the overlap between genes coregulated (correlation coefficient above 0.5) with *FOXM1* or with *FAM72* in patients from the Proliferation group. (D) Functional annotation of the top-50 genes coregulated with *FAM72* in the proliferation group. Benjamini indicates the corrected *p*-values of these annotations. (E) Expression levels of *FAM72* in bone marrow plasma cells (BMPCs), monoclonal gammopathy of undetermined significance (MGUS), multiple myeloma cells (MMCs) and human myeloma cell lines (HMCLs).

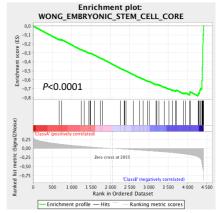


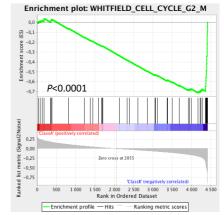




Enrichment plot: REACTOME_CELL_CYCLE_MITOTIC



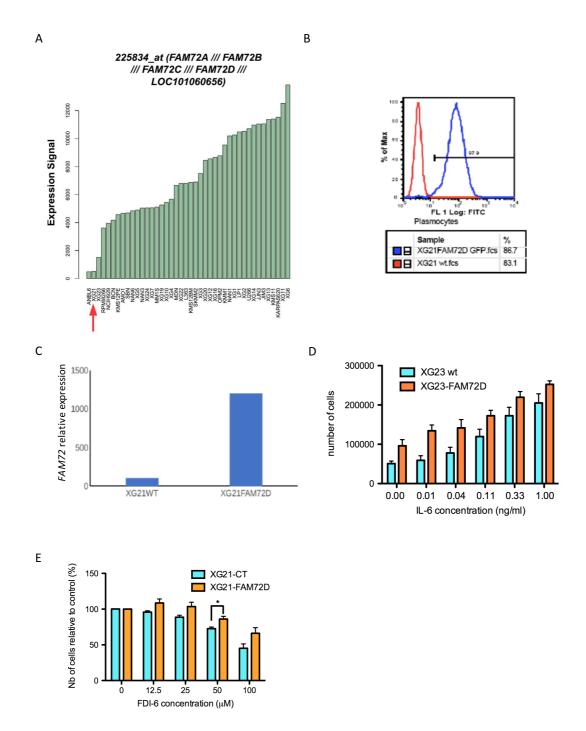




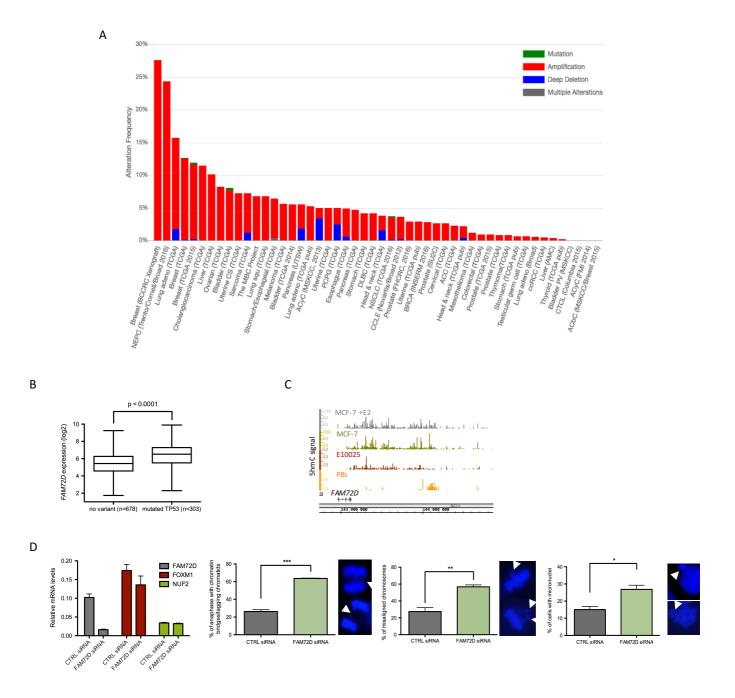
Enrichment plot: CHICAS_RB1_TARGETS_GROWING

Enrichment plot: KEGG_CELL_CYCLE -0,1 (ES) -0,2 -0,3 -0,4 -0,5 Enric -0,6 P<0.0001 -0,7 metric (Signal2Noise) 0,25 0.00 -0,25 -0,50 Zero cross at 2055 Ranked list -0,75 'ClassB' (negatively correlated) 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500 Rank in Ordered Dataset 500

- Hits


Enrichment pr

Ranking metric scores


Figure S7: Top gene sets significantly associated with high FAM72 expression in MM (TT2 cohort). GSEA enrichment plots with the absolute enrichment *P* value and the normalized enrichment score of the gene set.

Ranking m

ores

Figure S8: Overexpression of FAM72D::GFP in the multiple myeloma cell line XG21. (A) Expression levels of *FAM72* in human myeloma cell lines (HMCLs). Graphs in (A) and (B) were generated by GenomicScape (http://genomicscape.com/). (B) Fluorescence acquired cell sorting of XG21 cells expressing FAM72D::GFP. (C) RT-qPCR analysis of FAM72D expression in XG21 and XG21-FAM72D cells. (D) Cell proliferation assay with control and FAM72D-overexpressing XG23 cells in the presence of increasing concentrations of IL-6. (E) Impact of increasing concentration of FDI-6 on XG21 and XG21-FAM72D HMCLs.

Figure S9: Alterations of FAM72D levels in breast cancer. (A) FAM72D alterations in various cancer samples (http://www.cbioportal.org/). (B) Box plot analysis of *FAM72D* gene expression as a function of TP53 mutations in 981 breast cancer patients from the TCGA database (breast invasive carcinoma cohort, The Cancer Genome Atlas). (C) IGB view of the 5hmC signal at the *FAM72D* locus in PBs, MM E10025, and MCF-7 samples. (D) Inactivation of FAM72D in MCF-7 cells. From left to right: RT-qPCR analysis of *FAM72D, FOXM1* and *NUF2* expression in MCF-7 cells transfected with control or FAM72D siRNAs; quantification of chromatin bridges and lagging chromatids in anaphases of control and *FAM72D* siRNA transfected MCF-7 cells; quantification of cells with micronuclei in control and *FAM72D* siRNA transfected MCF-7 cells; quantification of cells with micronuclei in control and *FAM72D* siRNA transfected MCF-7 cells; which are indicated by white arrowheads.

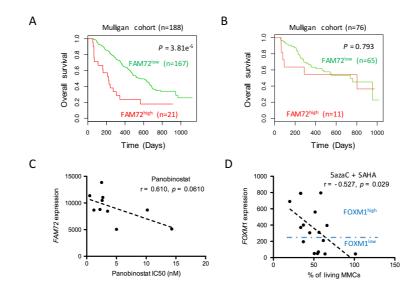


Figure S10: MM cells with high FAM72 expression show distinct sensitivity to drugs. (A) High FAM72 expression is associated with a shorter overall survival (OS) in a cohort of 188 patients at relapse treated with bortezomib monotherapy (Mulligan cohort). (B) OS in a cohort of 76 patients at relapse treated with dexamethasone monotherapy (Mulligan cohort). Cut-points for FAM72 expression were similar in (A) and (B). (C) 10 HMCLs were cultured with graded concentrations of Panobinostat for 4 days and IC50 were calculated with mean values of five experiments determined on sextuplet culture wells. A trend between high FAM72 expression predicts 5azacitidine/SAHA combination sensitivity to Panobinostat was identified. (D) FOXM1 expression predicts 5azacitidine/SAHA combination sensitivity of primary myeloma cells of patients. Mononuclear cells from tumor samples of 17 patients with MM were cultured for 4 days in the presence of IL-6 (2 ng/ml) with or without 2 μ M 5azacitidine and 300 nM SAHA. At day 4 of culture, the count of viable MMCs was determined using CD138 staining by flow cytometry.