Dynamic prediction of bleeding risk in thrombocytopenic preterm neonates

Susanna F. Fustolo-Gunnink,¹⁻² Karin Fijnvandraat,²⁻³ Hein Putter,⁴ Isabelle M. Ree,⁵ Camila Caram-Deelder,¹ Peter Andriessen,⁶ Esther J. d'Haens,⁷ Christian V. Hulzebos,⁸ Wes Onland,⁹ André A. Kroon,¹⁰ Daniël C. Vijlbrief,¹¹ Enrico Lopriore⁵ and Johanna G. van der Bom¹⁻¹²

¹Sanquin/LUMC, Center for Clinical Transfusion Research, Leiden; ²Amsterdam University Medical Center, Emma Children's Hospital, Department of Pediatric Hematology, Amsterdam-Zuidoost; ³Sanquin Blood Supply Foundation, Department of Plasma Proteins, Sanquin Research, Amsterdam; ⁴Leiden University Medical Center, Department of Medical Statistics, Leiden; ⁵Leiden University Medical Center, Willem Alexander Children's Hospital, Department of Neonatology, Leiden; ⁶Máxima Medical Center, Department of Neonatology, Veldhoven; ⁷Isala Zwolle, Amalia Children's Center, Department of Neonatology, Zwolle; ⁸University Medical Center Groningen, Beatrix Children's Hospital, Department of Neonatology, Groningen; ⁹Amsterdam University Medical Center, Emma Children's Hospital, Department of Neonatology, Amsterdam-Zuidoost; ¹⁰Erasmus Medical Center, Sophia Children's Hospital, Department of Neonatology, Rotterdam; ¹¹University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Department of Neonatology, Utrecht and ¹²Leiden University Medical Center, Department of Clinical Epidemiology, Leiden, the Netherlands.

©2019 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2018.208595

Received: October 9, 2018. Accepted: February 27, 2019. Pre-published: February 28, 2019. Correspondence: *J.G. VAN DER BOM* - j.g.vanderbom@lumc.nl

Dynamic prediction of bleeding risk in thrombocytopenic preterm neonates.

SUPPLEMENTARY ONLINE ONLY MATERIALS

SF Fustolo-Gunnink, MD1,2, prof. K Fijnvandraat, MD2,3, prof. H. Putter, PhD4, IM Ree, MD5, C.Caram-Deelder, PhD1 P Andriessen, MD6, EJ d'Haens, MD7, CV Hulzebos, MD8, W Onland, MD9, AA Kroon, MD10, DC Vijlbrief, MD11, prof. E Lopriore, MD5, prof. JG van der Bom, MD1,12.

1 Sanquin Research, Center for Clinical Transfusion Research, Plesmanlaan 1A, 2333 BZ Leiden, the Netherlands

2Academic Medical Center, Emma Children's Hospital, department of pediatric hematology, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, the Netherlands

3Sanquin Blood Supply Foundation, Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands.

4Leiden University Medical Center, department of medical statistics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands

5Leiden University Medical Center, Willem Alexander Children's hospital, department of neonatology, Albinusdreef 2, 2333 ZA Leiden, the Netherlands

6Máxima Medical Center, department of neonatology, De Run 4600, 5504 DB Veldhoven, the Netherlands

7Isala Zwolle, Amalia Children's center, department of neonatology, Dokter van Heesweg 2, 8025 AB Zwolle, the Netherlands 8University Medical Center Groningen, Beatrix Children's hospital, department of neonatology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands

9Academic Medical Center, Emma Children's hospital, department of neonatology, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, the Netherlands

10Erasmus Medical Center, Sophia Children's hospital, department of neonatology, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands 11University Medical Center Utrecht, Utrecht University, Wilhelmina Children's hospital, department of neonatology, Lundlaan 6, 3584 EA Utrecht, the Netherlands

12Leiden University Medical Center, department of Clinical Epidemiology, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.

Contents

Table SII additional information about the model variables7Figure S1 lowest platelet count during study for neonates with and without major bleed8Figure S2 gestational age at birth in neonates with and without major bleeding8Figure S3 postnatal age at onset of severe thrombocytopenia in neonates with and without8Table SIII sensitivity analyses9-10Extended methods section12-1	Table SI: list of potential predictors identified in literature search	2-6
Figure S1 lowest platelet count during study for neonates with and without major bleed8Figure S2 gestational age at birth in neonates with and without major bleeding8Figure S3 postnatal age at onset of severe thrombocytopenia in neonates with and without8Table SIII sensitivity analyses9-10Extended methods section12-1Def12-1	Table SII additional information about the model variables	7
Figure S2 gestational age at birth in neonates with and without major bleeding8Figure S3 postnatal age at onset of severe thrombocytopenia in neonates with and without major bleeding8Table SIII sensitivity analyses9-10Extended methods section12-1Def12-1	Figure S1 lowest platelet count during study for neonates with and without major bleed	8
Figure S3 postnatal age at onset of severe thrombocytopenia in neonates with and without major bleeding8Table SIII sensitivity analyses9-10Extended methods section12-1Def12-1	Figure S2 gestational age at birth in neonates with and without major bleeding	8
Table SIII sensitivity analyses9-10Extended methods section12-112-112-1	Figure S3 postnatal age at onset of severe thrombocytopenia in neonates with and without major bleeding	8
Extended methods section 12-1	Table SIII sensitivity analyses	9-10
D. (11	Extended methods section	12-16
References	References	11

Supplementary materials

Table S1: list of potential predictors identified in literature search (ranked by number of papers).

Description	Code	Number of papers	Description	Code	Number of papers
mode of delivery		100	sodiumbicarbonate	СО	11
gestational age		100	necrotizing enterocolitis		11
antenatal corticosteroids		99	coagulation	NM	11
birth weight		89	hematocrit		11
anyything related to ventilation		87	body temperature		11
Apgar scores		62	maternal smoking		10
chorioamnionitis		60	parity		10
surfactant		59	postnatal doppler	NM	10
gender		57	abruptio placentae	RA	9
anything related to hemodynamics / shock		54	phenobarbital	RA	9
patent ductus arteriosus		52	interleukin 6	NM	9
preeclampsia		44	red blood cells		9
includes ph, lactatae, BE, etc		44	nucleated red blood cells or erythroblasts		9
PROM		43	suspected fetal distress	NR	8
sepsis		34	beginning of labor (induced, spontaneous)		8
postnatal corticosteroids		31	nitric oxide	RA	8
respiratory distress syndrome		30	premature contractions	CO	7
platelets or platelet tx		29	timing of delivery		7
tocolysis		27	intubation in delivery room	СО	7
multifetal pregnancies		27	sodium		7
pneumothorax		23	white blood cell count		7
maternal age		22	clinical risk score for babies	NR	7
fetal heart rate reactivity	NR	21	prenatal care	NC	6
doppler		20	maternal fever	CO	6
inotropic agents		20	ethamsylate	RA	6
inborn versus outborn	NC	18	triplets	RA	6
twins	CO	16	resuscitation		6
interhospital transport	CO	16	seizures		6
maternal bleeding		15	SNAP score	NR	6
fetal position (breech, vertex)		15	abruptio placentae or placenta praevia	RA	5
indomethacin		15	chorionicity		5
SGA	CO	15	vitamin E	RA	5
Genes	NM	15	pulmonary hemorrhage		5
RBC transfusion		14	hypothermia	CO	5
antenatal magnesium		14	placenta	NM	4
resuscitation at birth		14	maternal diabetes		4
ethnicity		13	maternal phenobarbital	RA	4
Mode of conception		13	maternal alcohol use		4
maternal sepsis		12	antenatal indomethacin		4
IUGR	СО	11	meconium		4
maternal drugs		11	vitamin A	RA	4

NR = not registered in medical files. NC = no contrast (risk factor present in <5% or >95% of population. NM= not measured. RA = rare event. TE = timing of event problematic. When event occurs after risk period for bleeding (e.g. BPD). CO = risk factor combined with other risk factor (e.g. hyperglycemia and glucose disorders). ND = risk factor not well defined. NA = no association with bleeding (checked in a selection of papers). OT = other. Grey highlights: variables selected for further review (n=74).

Description	Code	Number of papers	Description	Code	Number of papers	
erythropoietin	RA	4	umbilical cord clamping	NR	2	
opioids		4	MOD triplet	RA	2	
hyperglycemia	СО	4	acidemia	CO	2	
periventricular leukomalacia	TE	4	birthorder		2	
thyroid	RA	4	antihypertensives	СО	2	
ureaplasma infection	CO	4	head circumference	NC	3	
gravida		4	bronchopulmonary dysplasia	TE	2	
blood glucose disorders		4	apnea	NR	2	
typecaregiver	NR	4	creatinemia	NM	2	
NIRS en FTOE (fractional tissue oxygen	NM	4	insulin-like growth factor	NM	2	
extraction) intraventricular hemorrhage	ОТ	4	neonatal leukemoid reaction	RA	2	
vena cava superior flow	NM	4	creatine kinase	NM	2	
ECMO	RA	4	AST, LDH, CK, HBDS, ASAT etc	NM	2	
umbilical line placement	NC	4	interleukin 8	NM	2	
maternal aspirin	RA	3	incubators	NR	2	
maternal vitamin K	RA	3	type of NICU	NC	2	
maternal race	NR	3	potential better practices	NR	2	
fetal heart rate monitoring	NR	3	nurse practicioner vs pediatric resident	NR	2	
birth asphyxia		3	TTS	RA	2	
interval between fetuses in multifetal	RA	3	clinical judgement (threatened, stable)	NR	2	
pregnancy	ND	2	recurrent apnoe / bradycardia	NR	2	
active labor	NK	3	maternal bethasone	CO	1	3
duration of labor	NK	3	maternal magnesium sulfate and	RA	1	
	RA	3	aminophylline maternal floor infarction	RA	1	
activin A	NM	3	maternal transplantation	RA	1	
bilirubin	NC	3	maternal hensitis	RA	1	
neutropenia	CO	3	maternal heta sympathicomimetics	RA	1	
infectious agents		3	maternal antiphospholinid syndrome	PA	1	
potassium		3	peripatal care	NC	1	
C-reactive protein		3	maternal toxomia	CO	1	
repeat suctioning	NR	3	maternal conital tract flora	NM	1	
EEG	NM	3	amount of ampiotic fluid	NC	1	
maternal SLE	RA	2	missente weight	NC	1	
maternal asthma	RA	2	placenta weight	NIM	1	
cerclage in triplet gestation	RA	2	placenta perfusion delect	NM	1	
HELLP	CO	2	maternal medication	ND	1	
maternal education	NR	2	with antibiotics	co	1	
maternal infection as an indication for	CO	2	maternal chronic disease (not specified)	RA	1	
placenta infarction	RA	2	maternal pregnancy related disease	CO	1	
idiopathic preterm labor	СО	2	cervical incompetence	NR	1	
maternal anaesthetics		2	cervical cerclage	RA	1	
maternal socio economic status	NR	2	amniocentesis	RA	1	
maternal use of 17-hydroxyprogesterone	RA	2	PROM in combination with	CO	1	
birth induction (iatrogenic preterm birth)	СО	2	maternal drugs and smoking	СР	1	

NR = not registered in medical files. NC = no contrast (risk factor present in <5% or >95% of population. NM= not measured. RA = rare event. TE = timing of event problematic. When event occurs after risk period for bleeding (e.g. BPD). CO = risk factor combined with other risk factor (e.g. hyperglycemia and glucose disorders). ND = risk factor not well defined. NA = no association with bleeding (checked in a selection of papers). OT = other. Grey highlights: variables selected for further review (n=74).

Description	Code	Number of papers	Description	Code	Number of papers	
history of abortion	RA	1	nuchalcord	RA	1	
maternal epidural paincontrol	CO	1	deliveryrisk	ND	1	
maternal urinary tract infection	CO	1	homebirth	RA	1	
previous adverse pregnancy outcome	NR	1	DOB		1	
uncomplicated pregnancy	NR	1	ТОВ		1	
maternal body mass index	NR	1	wrap after birth for temperature control		1	
maternal weight gain	NR	1	umbilical cord milking	NR	1	
maternal Hb	NM	1	trial of labor after CS	RA	1	
maternal Ht	NM	1	probiotics	RA	1	
maternal platelet	NM	1	amphotericin	RA	1	
mproteinuria	CO	1	EACA during ECMO	RA	1	
idiopathic preterm labor or PROM	CO	1	emollient	RA	1	
cervical width on admission	NR	1	ascorbicacid	RA	1	
length of prepartum hospital stay	NR	1	alpha proteinase inhibitor	RA	1	
maternal anti epileptics	RA	1	immuneglobulins	RA	1	
maternal trombocytopenia	RA	1	tranexamic acid	RA	1	
maternal serum thromboxane B2	NM	1	ibuprofen		1	
concentrations antenatal corticosteroids in combination	NC	1	docosahexaenoic acid	RA	1	
with vit K	ND	-	dopamin vs hydrocortison	СО	1	
PROM and oligonydramnios	NR	1	epinephrine	СО	1	
twinantcorts	CO	1	diuretics	RA	1	
antcortstoco	0	1	antibiotics		1	4
Other causes for preterm birth, (eg prenat diagn malformation)	ND	1	opioids plus muscle relaxant	RA	1	
unknown cause of preterm birth	CO	1	musclerelaxants	RA	1	
fetal inflammatory response (placenta	СО	1	tolazoline	RA	1	
biophysical profile	СО	1	alkali	RA	1	
antenatal thyroid releasing hormone	NM	1	vitaminK	NC	1	
maternal hyperuricemia	RA	1	ambroxol	RA	1	
month of birth	NA	1	buffer	RA	1	
PPROM guideline	NR	1	analgesia	RA	1	
bruising postpartum	NR	1	fluconazol		1	
MOD in hemophilia	RA	1	insulin	RA	1	
umbilical cord abnormal	ND	1	macrosomy	СО	1	
prolonged second stage of labor	NR	1	twin with 1 anomalous fetus	RA	1	
shoulder dystocia	RA	1	congenital anomaly	RA	1	
mode of labor	СО	1	reduced multifetal pregnancy	RA	1	
prolonged labor	NR	1	discordant twins (vs non-discordant)	RA	1	
precipitous delivery (quick delivery, <3	NR	1	postconceptional age	СО	1	
hours)	₽A	1	discordant triplets (vs non-discordant)	RA	1	
placente accrete plus meconium		1	meningitis	RA	1	
placenta accreta plus meconium	кA D A	1	pathological icterus (nieuwe variabele)	NC	1	
protonia marcuon pius amnionius		1	diffuse intravascular coagulation		1	
	ĸА	1	retinopathy of prematurity	TE	1	
no spontaneous respiration at 5 min		1	pulmonary interstitial emphysema	СО	1	
			· · · · · · · · · · · · · · · · · · ·	-		

NR = not registered in medical files. NC = no contrast (risk factor present in <5% or >95% of population. NM= not measured. RA = rare event. TE = timing of event problematic. When event occurs after risk period for bleeding (e.g. BPD). CO = risk factor combined with other risk factor (e.g. hyperglycemia and glucose disorders). ND = risk factor not well defined. NA = no association with bleeding (checked in a selection of papers). OT = other. Grey highlights: variables selected for further review (n=74).

Description	Code	Number of papers	Description		Number of papers	
hypoglycemia	CO	1	extubation	CO	1	
pneumonia		1	biochemical pulmonary assessment	NM	1	
neonpulmcompl	СО	1	paralysis during ventilation	RA	1	
metalloprotease	NM	1	biochemical long maturity and gestational	NM	1	
lymphocytes	NM	1	age irregular respiration	NR	1	
mannose-binding lectin	NM	1	fresh frozen plasma		1	
hemopoietic stem cells	NM	1	based on genetic mutations and	RA	1	
Erythropoietine and interleukin 6	NM	1	homocysteine levels conjunctival hemorrhage	RA	1	
immune proteins and cytokines	NM	1	retinal hemorrhage	RA	1	
Free radicals	NM	1	exchange transfusion	RA	1	
lactate and base excess	CO	1	plasmanate	CO	1	
genetic polymorphisms of antioxidant	NM	1	periventricular bleeding	TE	1	
homocysteine	NM	1	gastro-intestinal surgery	OT	1	
ADAMTS13	NM	1	rectal bleeds guideline	NR	1	
paCO2	CO	1	vaccinations	TE	1	
antioxidants	NM	1	HELPP and Preterm	СО	1	
antithrombin III	NM	1	MOD in triplets	RA	1	
enolase	NM	1	weight improvement program	NR	1	
IL1a	NM	1	digital cervical examination	NR	1	
IL1b	NM	1	corticosteroids both antenatal and	CO	1	
tumor necrosis factor	NM	1	postnatal intrauterine myelomeningokele repair	RA	1	_
osmolality	NM	1	candida infection	RA	1	5
calcium	NM	1	nasal CPAP + minimal handling	NR	1	
hypoxanthin	NM	1	influence of hirth weight on bleeding risk	RA	1	
xanthin	NM	1	during ECMO	D.1	1	
VEGF	NM	1	multiple risk factors for bleeding during ECMO	RA	1	
adrenomedullin	NM	1	cathether position	NR	1	
S100protein	NM	1	renal injury in asphyxiated newborn	RA	1	
brain derived neurotrophic factor	NM	1	enteral feeding	NC	1	
interleukin 12	NM	1	antenatal and postnatal phenobarbital	CO	1	
nursing excellence	NR	1	cardiac arrest before ECMO	RA	1	
after-hours in house senior physician cover	NR	1	mode of ECMO	RA	1	
environmental temperature	NR	1	breast milk	NR	1	
organizational quality of NICU	NR	1	bpm	NR	1	
fetal vs neonatal growth charts	OT	1	cardiac markers e.g. troponin, pro-BNP	NM	1	
height of NICU	NC	1	enrollment bias	OT	1	
study participation	OT	1	weight during ECMO	RA	1	
individualized care	NR	1	consanguin parents	NR	1	
outpatientcare	CO	1	age at intubation	CO	1	
outborn	CO	1	age at admission to NICU	NC	1	
active IVH surveillance methods	NR	1	age at surfactant administration	CO	1	
minimal handling	NR	1	surgery	OT	1	
IVH prevention protocol	NR	1	congenital heart disease	RA	1	

NR = not registered in medical files. NC = no contrast (risk factor present in <5% or >95% of population. NM= not measured. RA = rare event. TE = timing of event problematic. When event occurs after risk period for bleeding (e.g. BPD). CO = risk factor combined with other risk factor (e.g. hyperglycemia and glucose disorders). ND = risk factor not well defined. NA = no association with bleeding (checked in a selection of papers). OT = other. Grey highlights: variables selected for further review (n=74).

Description	Code	Number of papers
chesttubes	RA	1
healthy versus entire population (BW curves study)	ОТ	1
full fontanel	NR	1
abnormal eye signs (e.g. nystagmus)	NR	1
decreased tone	NR	1
change in activity (spontaneous movement)	NR	1
abnormal movement or posture	NR	1
targeted neonatal echocardiography	NM	1
	NM	1
fentanyl versus dexmedetomidine	RA	1
laboratory samples drawn from placenta vs baby	NM	1
neonatal resuscitation program team training	NR	1
NAITP	RA	1
enemas	RA	1
maternal BMI impact on triplets	CO	1
discordant doppler velocimetric findings in twins	RA	1
neonatal status score	NR	1
outpatient and chorioamnionitis	RA	1
guideline for preeclampsia	NR	1

NR = not registered in medical files. NC = no contrast (risk factor present in <5% or >95% of population. NM= not measured. RA = rare event. TE = timing of event problematic. When event occurs after risk period for bleeding (e.g. BPD). CO = risk factor combined with other risk factor (e.g. hyperglycemia and glucose disorders). ND = risk factor not well defined. NA = no association with bleeding (checked in a selection of papers). OT = other. Grey highlights: variables selected for further review (n=74).

Variable	Definition	What was entered into the model at each landmark point			
Postnatal age	Age in hours since time of birth	Age in hours (baseline variable)			
Gestational age	Gestational age as reported in medical files	Gestational age in days (baseline variable)			
IUGR	Birthweight below the 10 th centile according to Dutch national birth weight curves	IUGR yes/no (baseline variable)			
Mechanical ventilation	A neonate was deemed as being mechanically ventilated when he or she was intubated, irrespective of ventilation type, ventilator settings and duration of ventilation.	Mechanically ventilated yes/no			
Platelet count	Every platelet count was recorded in the database as count $x10^{9}/L$.	Most recent platelet count			
Platelet transfusion	Every platelet transfusion was recorded in the database, including dose.	Transfusion given within 2 hours after landmark point yes/no ¹			
NEC/sepsis (combined)	NEC was defined as \geq grade IIA as per Bell's criteria. ¹ Sepsis was defined as culture positive sepsis or culture negative sepsis where antibiotics are given for a minimum of 5 complete days	NEC/sepsis yes/no. If either NEC or sepsis, are present, answer yes.			

Table S2: additional information about the model variables.

¹ We included transfusion after, not before, the landmark point into the model, because we wanted clinicians to be able to calculate bleeding risk with and without giving a platelet transfusion. This could potentially induce immortal time bias, but since the time interval is relatively short compared to our prediction window (2 versus 72 hours), we deemed this risk negligible. We did not present this feature of the model in the main paper, because the combined hazard ratios of transfusion and the interaction term of transfusion and platelet count suggest that transfusions are associated with increased bleeding risk in all neonates. We hypothesise that this is partially caused by the fact that we did not adjust for all possible confounders, due to the limited number of events in our study, though a true adverse effect of transfusion cannot be ruled out.

Figure S1: lowest platelet count during study for neonates with and without major bleed.

Legend figure S1. This scatterplot represents the lowest platelet count during study for neonates with and without major bleeding. For neonates with major bleeding, end of study was defined as the major bleed, therefore this platelet count represents the lowest platelet count prior to major bleeding. Lines represent median and interquartile ranges.

Figure S2: gestational age at birth in neonates with and without major bleeding.

Figure S3: postnatal age at onset of severe thrombocytopenia in neonates with and without major bleeding.

1 Table S2: sensitivity analyses

Name	Description	Results and interpretation
Timing accuracy	In our primary analysis, all variables were included irrespective of whether time of event was known exactly (+/- five minutes), or was estimated (range: +/- 30 minutes to +/- 12 hours). In this sensitivity analysis, we only included patients if 100% of their event times had a maximum uncertainty of +/- 30 minutes.	This left 308 neonates in the model, with 41 major bleeds. Minor changes in covariate hazard ratios indicate that timing inaccuracies did not substantially influence our primary model.
Major bleed plus mortality	In our primary analysis, our outcome was major bleeding. In this sensitivity analysis, our outcome was a composite of major bleeding and mortality.	136 neonates reached this composite endpoint within ten days after T_0 . Minor changes in covariate hazard ratios indicate that our model predicts a composite outcome of major bleeding and mortality as well as it predicts major bleeding alone.
Model without grey areas	In our primary model, events that occurred after an ultrasound that showed no major bleed, but prior to an ultrasound that showed a major bleed, the so-called <i>grey area</i> , were included. In this sensitivity analysis, we excluded those, because we could not know whether these happened prior to or after the bleed.	Grey areas ranged from zero to ten days. Minor changes in covariate hazard ratios indicate that the uncertainty of the timing of events within these 'grey area's' did not substantially influence our primary model.
Revised start-time of major bleeding	In our primary analysis, the time of major bleed was defined as the time on which a bleeding was classified as major for the first time. In this sensitivity analysis we looked at the ultrasounds prior to the major bleeding to see if the bleeding had already started (minor bleed on previous ultrasound scan). If so, we changed the time of major bleed accordingly.	This left 635 neonates in the model, with 65 major bleeds. Minor changes in covariate hazard ratios indicate that improving our estimation of the time of bleed did not substantially improve our primary model.
Thrombocytopenic episode only	In our primary analysis, neonates reached end of study at time of discharge, death or major bleeding. In this sensitivity analysis, end of study is defined as the end of severe thrombocytopenia plus an additional three days, a window of time during which the effect of thrombocytopenia might still be present.	This left 58 major bleeds in the model. Minor changes in covariate hazard ratios indicate that our model has good predictive power even after platelet counts return to normal.
Landmarks every hour	In our primary analysis, landmarks were set at every two hours. In this sensitivity analysis, landmarks were set at every hour, to assure accurateness of order of events (events prior to or after landmark points).	Minor changes in covariate hazard ratios indicate that changing the number of landmarks did not substantially impact our model.

1 Table S3: sensitivity analysis (continued)

Sensitivity analysis model	Timing accuracy	Major bleed plus mortality	Model without grey areas	Revised start time of major bleeding	Thrombocytopenic episode only	Landmark every hour
Covariates with time-constant effects						
Gestational age (days)	1.01 (0.99 – 1.04)	0.99 (0.98 - 1.01)	1.00(0.99 - 1.02)	1.00 (0.99 - 1.02)	1.01 (0.99 – 1.02)	1.00(0.98 - 1.02)
Postnatal age (days)	0.95 (0.89 - 1.01)	0.96 (0.93 - 1.00)	0.88(0.82 - 0.94)	0.89 (0.84 - 0.95)	0.89 (0.84 - 0.94)	0.88 (0.83 - 0.94)
Mechanical ventilation	7.47 (2.82 - 19.78)	3.87 (2.34 - 6.40)	4.43 (1.81 – 10.80)	4.82 (2.04 – 11.35)	5.29 (2.18 - 12.82)	4.18 (1.83 - 9.52)
NEC/sepsis	0.86 (0.38 - 1.94)	0.72 (0.47 - 1.08)	0.89 (0.43 - 1.84)	0.72 (0.37 – 1.42)	0.81 (0.41 - 1.59)	0.80(0.42 - 1.53)
Platelet transfusion	0.58 (0.15 - 2.20)	0.55 (0.26 - 1.13)	0.39(0.05 - 3.03)	0.88 (0.30 - 2.57)	1.10 (0.38 - 3.21)	1.05(0.35 - 3.14)
Interaction platelet count and transfusion	1.89 (0.78 - 4.56)	1.73 (1.06 - 2.82)	1.67 (0.46 - 6.00)	1.35 (0.67 – 2.72)	1.18 (0.59 – 2.37)	1.17 (0.57 – 2.42)
Covariates with time-varying effects						
IUGR Constant	0.53 (0.14 – 1.97)	0.48 (0.23 - 0.99)	0.23 (0.05 - 1.04)	0.61 (0.21 – 1.77)	0.49 (0.16 – 1.52)	0.57 (0.20 - 1.68)
IUGR Time-varying: LM	0.59 (0.19 – 1.86)	1.05 (0.59 – 1.87)	0.41 (0.09 – 1.82)	0.28 (0.09 - 0.93)	0.35(0.11 - 1.08)	0.25(0.08 - 0.85)
IUGR Time-varying: LM2	1.10 (0.92 - 1.31)	1.01 (0.96 - 1.15)	1.21 (0.98 – 1.51)	1.26 (1.05 – 1.50)	1.21 (1.02 – 1.42)	1.28(1.07 - 1.53)
Log10 platelet count Constant	2.89 (0.66 - 12.56)	0.96 (0.43 – 2.11)	2.08(0.65-6.64)	2·42 (0·9 10 -6·44)	$2 \cdot 17 (0 \cdot 76 - 6 \cdot 15)$	2.07 (0.84 - 5.14)
Log10 platelet count Time-varying LM	0.24(0.08-0.71)	0.44(0.27 - 0.72)	0.37 (0.16 - 0.87)	0.25 (0.13 - 0.48)	0.28 (0.14 - 0.58)	0.28(0.14 - 0.56)
Log10 platelet count Time-varying: LM2	1.19 (1.00 – 1.41)	1.09 (1.03 – 1.17)	$1 \cdot 10 (0 \cdot 98 - 1 \cdot 23)$	1.17 (1.06 – 1.30)	1.16 (1.03 – 1.30)	1.16 (1.05 – 1.29)

2 Coefficients are expressed as hazard ratio (95% confidence interval).

2

3 The study protocol was published online on <u>www.clinicaltrials.gov</u> (NCT03110887). The institutional review
4 board of the Academic Medical Center Amsterdam approved the study and waived the need for informed
5 consent, since the study involves retrospective datacollection. The study was conducted in accordance with the
6 Declaration of Helsinki and reported according to The Transparent Reporting of a Multivariable Prediction
7 Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines.²

8 **Population**

9 We performed a cohort study among consecutive preterm neonates with thrombocytopenia admitted to any one 10 of seven participating NICU's in the Netherlands between January 2010 and January 2015. The cohort 11 comprised all neonates with gestational age at birth < 34 weeks and at least one platelet count $< 50 \times 10^9$ /L. The 12 NICU's were located in the Leiden University Medical Center, Academic Medical Center Amsterdam, Máxima 13 Medical Center Veldhoven, Isala Zwolle, Erasmus Medical Center Rotterdam, University Medical Center 14 Utrecht and University Medical Center Groningen. We excluded patients with 1) severe congenital 15 malformations; 2) a high suspicion of spurious platelet count (e.g. clots in the sample, or spontaneous platelet 16 count recovery within six hours, or a platelet count labelled as spurious in the medical file); 3) thrombocytopenia 17 occurring exclusively in the context of exchange transfusion; 4) prior admission to another NICU or 18 readmission, and 5) major bleeding prior to severe thrombocytopenia. Neonates with major bleeding after end of 19 follow up were not excluded, but registered as not having experienced major bleeding during the study.

20 Selection of potential predictors

21 We chose the predictors for our model prior to data analysis, under supervision of a professor of clinical 22 epidemiology and head of clinical transfusion research center. Five experts (a paediatric hematologist and senior 23 investigator with extensive experience in neonatal hematology studies, a pediatric hematologist and transfusion 24 specialist in training, two neonatologist (of which one senior investigator with extensive experience in neonatal 25 hematology studies) and a PhD student with an MD degree selected variables from a literature-based list of 26 potential prognostic factors. The list was based on an large literature search yielding over 8000 abstracts. 360 27 risk factors were identified from the abstracts and ranked according to number of publications per risk factor 28 (Table SI). A variable was excluded from this list when it was not consistently documented in medical records, 29 when few studies concerning this variable had been published, when a strong interaction with another variable 30 was expected, when it was rare or too prevalent (occurring in <5% or >95% of our study population) or when the

1	variable was not measured routinely in clinical practice. All remaining risk factors (n=74) were further reviewed
2	by the experts, who then voted for risk factors deemed to be good predictors for major bleeding. Based on the
3	number of votes per risk factor we included the following variables in the model: gestational age, intra uterine
4	growth retardation (IUGR), mechanical ventilation, platelet count, platelet transfusion, postnatal age at inclusion,
5	and necrotizing enterocolitis (NEC) and/or sepsis (combined) (Table SII). Despite the lack of evidence for a
6	direct causal assocation between platelet count and bleeding, platelet count was included, because ultimately,
7	our aim is to investigate which (if any) subgroups of neonates with thrombocytopenia benefit from platelet
8	transfusions. Therefore it is essential for platelet count to be part of the prediction model. Platelet transfusion
9	within the next two hours following the moment of bleeding risk prediction was included in the model to allow
10	for calculation of two bleeding risks: one with and one without administration of a transfusion. NEC was defined
11	as \geq grade IIA as per Bell's criteria. ¹ Sepsis was defined as culture positive sepsis or culture negative sepsis
12	where antibiotics are given for a minimum of 5 complete days, to allow for use of the prediction model early in
13	the course of sepsis, when culture results are not yet available. NEC and sepsis were combined because at onset,
14	it is often difficult to distinguish between NEC and sepsis. Combining them allows for use of the prediction
15	model despite this uncertainty.
16	Main outcome definition
17	The main outcome of this study was major bleeding, defined as either one of the following:
18	1. Intraventricular hemorrhage (IVH) grade 3 (according to the Papile grading system); ³
19	2. IVH of any grade in combination with parenchymal involvement;
20	3. Parenchymal hemorrhage (without IVH) visible on ultrasound scan;
21	4. Cerebellar hemorrhage visible on ultrasound scan;
22	5. Pulmonary hemorrhage, defined as fresh blood from the endotracheal tube in combination with
23	increased ventilatory requirements;
24	6. Any other type of hemorrhage, if major. A bleeding was considered major if it required or if it was
25	associated with either one of the following: a) red blood cell transfusion, b) volume boluses, c) need for
26	inotropes (either start of inotrope therapy, or increased dose of current therapy), d) significant drop in
27	blood pressure (mean blood pressure less than gestational age).
28	Clinical practice in the seven participating centers
29	In general, national protocols recommended that cranial ultrasound scans in preterm neonates were made on day

30 of life 1, 3, 7 and then biweekly until discharge, and additional scans when clinically indicated. National platelet

12

transfusion protocols recommended transfusion at a platelet count threshold of 20x10⁹/L. A higher threshold of 50x10⁹/L was recommended in case of active bleeding, surgery, after exchange transfusion, or for a clinically unstable neonate of <1500 grams and <32 weeks gestational age at birth. A threshold of 100x10⁹/L was recommended prior to exchange transfusion. No national guidelines existed with regards to frequency of platelet count measurements, except for counts immediately prior to and within 24 hours after platelet transfusion. There was some variation in discharge policies between centers, depending on the presence of high care neonatal units in the vicinity of the NICU.

8 Data acquisition

9 Neonatologists, PhD students and medical students collected the data in an online GCP approved database. All 10 received training to ensure data quality. We collected data from electronic and paper patient records on site. Start 11 of the study (T_0) was defined as the first moment at which platelet counts dropped $<50x10^9/L$. End of study was 12 defined as the time of a major bleed, death or discharge/transfer, whichever occurred first. All events were 13 recorded with date and time in hours and minutes. If the exact time of an event was unknown, an estimate was 14 reported. We included neonates once their platelet count dropped below 50×10^{9} /L, and followed them for 10 15 days, irrespective of their platelet counts. If they developed another episode of thrombocytopenia after these 10 16 days, they were not re-included. Every ultrasound scan report was entered into the database. MRI results were 17 not used to identify major bleeding, as only a small selected subset of neonates receives MRI scans, and 18 ultrasound scans are generally considered to detect major bleeding accurately. Antepartum scan results were not 19 recorded. We extracted platelet counts from the electronic hospital systems and checked for spurious platelet 20 counts. Several hospitals provided electronic baseline data (e.g. GA, birth weight, date of birth, etc) from a 21 national neonatal database, which we extracted and uploaded into the study database. We manually entered all 22 additional clinical data. Discharge letters and ultrasound scan reports were screened for major hemorrhages.Site 23 principal investigators reviewed the data concerning major bleeds to confirm accuracy of grading and timing.

24 Sample size calculation

Various studies showed bleeding incidences in premature neonates of 7-11%.⁴⁻⁷ Assuming an event rate of ten percent, and using an event per variable ratio of ten, we would need to include 100 neonates for each variables included in the model. Data were available from 7 NICU's over a period of 5 years. Each year, 2800 neonates are admitted to the participating NICUs, of which approximately five percent have severe thrombocytopenia. Therefore, we expected 140 eligible neonates each year, and a sample size of 700.

30 Statistics

1 The core research team drafted and approved a statistical analysis plan prior to data analysis. We developed a 2 proportional baselines landmark supermodel, as described elsewhere, with bleeding within the next three days as 3 outcome.⁸ At each two hour timepoint, all available data were entered into the model (Table SII). We used a full 4 model approach and did not remove non-significant predictors.⁹ We included 7 main variables and an interaction 5 term between platelet transfusion and platelet count, because we hypothesized that the association between 6 platelet transfusions and bleeding may become stronger when platelet counts are lower. In order to test for time-7 varying covariate effects, significant interactions between covariates and landmark times (both linear and 8 quadratic) were also included in the model. Missing data were replaced by missing indicators. With this 9 predictionmodel, risk of bleeding at any time point within seven days could be calculated. Because the last 10 model (at day seven) also predicts bleeding within three days, the total duration of follow up was ten days. 11 Follow up was stopped after 10 days for two reasons: 1) we expected the number of neonates to develop major 12 bleeding after more than 10 days of onset of thrombocytopenia to be low, and 2) after 10 days, many neonates 13 would be discharged, and follow up would be very incomplete, hampering accurate analysis.

We validated the model by internal calibration using the heuristic shrinkage factor by van Houwelingen et al.¹⁰ When calculating bleeding risk probabilities from the model, we accounted for competing risk due to death using the Aalen-Johansen estimator.¹¹ We did not correct for discharge or transfer, as we assumed that neonates who were discharged or transferred did not develop a major bleed. We performed various sensitivity analyses in order to test the robustness of the model. (Table SIII)

We evaluated the model's accuracy in correctly discriminating between patients with and without major bleeding using the dynamic cross-validated c-index. A c-index of 1.0 indicates perfect discrimination, while a c-index of 0.5 is obtained when the model performs as well as chance. We calculated a c-index at each two hour timepoint, and reported this series of c-indices as a graph.

Analyses were carried out using SPSS (version 24.0), Stata (version 14.1) and R (version 3.4.2).

24 Clinical applicability of the model

The process from initial prediction model development to implementation into clinical practice can be divided into multiple steps, as explained in the TRIPOD statement paper. The TRIPOD statement is a prediction model development checklist, which was endorsed by a large number of prominent medical journals.² The first step (model development studies) is the development of a basic first model in a cohort. The next step is validation of this model in another cohort (model validation studies). Finally, the model needs to be tested in a randomized controlled trial (impact studies), because we cannot assume that prediction based treatment will invariably

improve outcome.¹² Our study is a model development study. It is a first, basic prediction model for major 1 2 bleeding in preterm neonates with severe thrombocytopenia. Due to the dynamic nature of the model, it cannot 3 be fully summarized in one table, but once model validation studies have been performed, we will develop an 4 online calculator. This calculator will perform the complex mathematical procedures required to convert the 5 input of the seven variables into an absolute bleeding risk for a specific neonate at a specific time. We have 6 chosen not to publish the calculator along with this paper, in order to prevent inappropriate premature use of the 7 model in clinical practice. The model is available upon request for researchers looking to perform model 8 validation and impact studies.

9 Role of the funding source

10 The funding source was not involved in the design, data collection, analyses and publication of this study. The

11 corresponding author had full access to all of the data and the final responsibility to submit for publication.

12

15

References

2	1.	Bell MJ, Ternberg JL, Feigin RD, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based
3		upon clinical staging. Ann Surg 1978;187(1):1-7.
4	2.	Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction
5		model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. BMJ
6		2014;(350):g7594.
7	3.	Papile L a, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and
8		intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr
9		1978;92(4):529–534.
10	4.	Honohan A, Van't Ende E, Hulzebos C, et al. Posttransfusion platelet increments after different platelet
11		products in neonates: a retrospective cohort study. Transfusion 2013;53(12):3100-3109.
12	5.	Murray N a, Howarth LJ, McCloy MP, Letsky E a, Roberts I a G. Platelet transfusion in the management
13		of severe thrombocytopenia in neonatal intensive care unit patients. Transfus Med 2002;12(1):35-41.
14	6.	von Lindern JS, van den Bruele T, Lopriore E, Walther FJ. Thrombocytopenia in neonates and the risk
15		of intraventricular hemorrhage: a retrospective cohort study. BMC Pediatr 2011;11(1):16.
16	7.	Stanworth SJ, Clarke P, Watts T, et al. Prospective, observational study of outcomes in neonates with
17		severe thrombocytopenia. Pediatrics 2009;124(5):e826-34.
18	8.	Fontein DBY, Klinten Grand M, Nortier JWR, et al. Dynamic prediction in breast cancer: Proving
19		feasibility in clinical practice using the TEAM trial. Ann Oncol 2015;26(6):1254–1262.
20	9.	Steyerberg EW. Clinical prediction models - a practical approach to development, validation and
21		updating. Springer; 2009. 1-507 p.
22	10.	van Houwelingen J, Le Cessie S. Predictive value of statistical models. Stat Med 1990;9(11):1303–25.
23	11.	Putter H, Fiocco M, Geskus R. Tutorial in biostatistics: Competing risks and multi-state models. Stat
24		Med 2007;262389–2430.
25	12.	Kappen TH, van Klei WA, van Wolfswinkel L, Kalkman CJ, Vergouwe Y, Moons KGM. Evaluating the
26		impact of prediction models: lessons learned, challenges, and recommendations. Diagnostic Progn Res
27		2018;2(1):11.
28		