Compound heterozygosity in PKLR gene for a previously unrecognized intronic polymorphism and a rare missense mutation as a novel cause of severe pyruvate kinase deficiency

Shruti Bagla, ${ }^{1}$ Kanta Bhambhani, ${ }^{1}$ Manisha Gadgeel, ${ }^{1}$ Steven Buck, ${ }^{1}$ Jian-Ping Jin² and Yaddanapudi Ravindranath ${ }^{1}$
${ }^{1}$ Division of Hematology/Oncology, Department of Pediatrics, Wayne State University - School of Medicine, and Children's Hospital of Michigan and ${ }^{2} D e-$ partment of Physiology, Wayne State University, School of Medicine, Detroit, MI, USA

Correspondence: YADDANAPUDI RAVINDRANATH - ravi@med.wayne.edu doi:10.3324/haematol.2018.214692

Supplementary Data

DNA isolation: Peripheral blood was collected in EDTA tubes and centrifuged for 5-10 minutes to separate the buffy coat, plasma and RBC fractions. Buffy coat was carefully collected from the top of RBC fraction. DNA was isolated from the buffy coat using the QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany) according to manufacturer's protocol.

Polymerase chain reaction and Sanger sequencing: For each PCR, 10ng of genomic DNA was amplified with 250 nM of forward and reverse primers and AmpliTaq Gold 360 PCR 2x Master Mix (Thermo Fisher Scientific, Rockford, IL, USA). Standard PCR experiment was run according to the manufacturer's protocol. Annealing temperature was calculated for each primer pair according to their melting temperature. PCR product was further purified using PCR purification kit (Qiagen, Hilden, Germany). Primer sequences are listed in supplementary table below.

For Sanger sequencing, DNA samples and primers were submitted to the Applied Genomics Technology Center Sequencing Core at Wayne State University.

RNA isolation: RNA was isolated from buffy coat using manufacturer's guidelines (RiboPure RNA purification kit, blood; Thermo Fisher Scientific, Rockford, IL, USA).
qPCR: For each sample, 500 ng of total RNA was reverse transcribed using Superscript IV Reverse Transcriptase Kit (Thermo Fisher Scientific, Rockford, IL, USA). Random hexamers were used for cDNA synthesis, and reaction was carried out in two steps according to the manufacturer's guidelines.

For regular PCR for mRNA sequencing, cDNA was diluted five-fold with nuclease-free water (120ul NFW in 30ul cDNA reaction mix). Primer sequences for PKLR around exon 7 were designed with NCBI Primer design tool and ordered from Integrated DNA Technologies. PCR protocol is described above.

For real-time PCR, Taqman gene expression assays were ordered from Applied Biosystems for PKLR (Hs00176075_m1) and GAPDH (Hs02758991_g1) as the endogenous control. Standard Taqman reaction was run on ABI Q3 instrument.

Supplementary Table 1: List of primers for PKLR gene

Primer	Sequence	Assay
E7F	GGA AGG ACA CGG CAT CAA GA	For Sanger sequencing of CDNA
E7R	CTT GTC TCT GCC CTC GTT GG	
R1	GAT CTC CGG TCC CTT GGT GTC C	
F2	TCC ACG GAG CGA GAT GC	
F3	TCC TGG AAC ACC TCT GCC TAC TG	PCR only
F1	TTC GGT CAT GGG TCT CTA AGT	
E2F1	GCT ATG GCA GAC ACC TTC CT	
I2R1	CAT ACT CAG CTA GAC TGT CAG CTC	

Supplementary Table 2: Proband's genomic sequence within PKLR gene

PKLR intron 2 sequence:

GTAAGCACTCCCATCCCCCTGCAGCCACACAGGGCCTATTGGTATTTCTTGAGGTGCT[T/A]C TTCATCTTTTGTCTCCTTTGAGACTTCTCCATGTTTGACACAGTCATT[C/T]ATTTAACAAAA ATTTGTTGAGCATATAGTAGACAAGATTTTGGGCCCTGGGAGTAGATCAGTGAAAAAAAC AGACAAAAATCCCTACCCTTGGGGAGCTGACAGTCTAGCTGAGTATGACAATAAATAGTA AGCACAATAAATTATTTAAAATAAGTAAATTATTTATTCCGTTAGAAAGTGAGGCCGGGC ATGGTGGCTCATGCCTGTAATCGCAGCATGTTGGGAGGCCCAGGTGGGCAGATCACTTGA GGTCAGGAGTTCGAGACTAGCCTGACCAACATGGAGAAACCCCGTCTCTACTAAAAATAC AAAATTAGCCGGGCATGGTGGTGCGTGCCTGCAATCCCAGCTACTCAGGAGGCTGAGGCA GGAGAATCGCTTGAACCCAGGAGGCGGAGACTGTGGTGAGCCGAGATCACACCATTGCAT TCCAGCCTGGGCAACAGGAGAAAAACTCCATCTCACAAAAAAAAAAAAAAAAAAAAAAA AAAAAAGTGGGCTGGGCTCAGTGGCTCATGCCTGTAATCCCAGCACTTTAGGAGGCCAAG GTTGGCAGATCGCTTGAGCCCAGGAGTTTGAGACCAGTCTGGGTAAATGGCAAAACCCAT CTCTACAAAAAATACAAAACTTAGTTGAGTGTGGTGGTGCATGCCTGTAGTCCCAGCTAC TCAGGAGGCTGAGGTGGGAGGATCACTTAAGCCCAGGAGGTCACGGCTGCAGTGAGTCAT GATCGAGCCACTGTACTCCAGCCTAGGTGACAGACGAGACCCTAGAGAGAAAGAGAGAAA GAAAGAAAGAAGGAAAGAAAGAAAGAAAGAGAGAGAGAAAGAAGGAAGGAAGGAAGGAGG GAGGGAGGGAGGGAAGGAAGGAAGGAAAGAAAGCAAGCAGGCAAGAAAGAAAGAAAGAAA AGAAAGAAGGAAGGAAGGAAGGAAGGAAAGAAAGAAAGAAAGAGAAAGAAAGAAAGAAAG AAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAG AAAGGAGTGAAAGTTGGCCGGGCATGGTGGCTCTTGCCTATAATCCCAGCACTTTGGGAG GCTGAGGCAGGTGGATCACCTGAGGTCAGGGGTCCGAGACCAGCCTGGCTAATGTGGTGA AACTCTGTTTCTACTAAAAATACAAAAAATTAGCCAGGCATGGTGGCATGTGCCTATAAT CCCAGCTACTCGGGAGGCTGAGGCAGGGGAATCGCTTGAACCCGGGAGACAGAGATTGCA GTGAGCCAAGATCACGCCATTGCACTCCAGTTTGGGCAACAAGAGCGAAACTCTGTTTGT TTGTTTGTTTGTTTTTAAAAAAAGAAAAAAAAGCTGGGCGCGGTGGCTCACGCCTGTAAT CCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACCTGAGGTCAGGAGTTCGAGACCAGC CTCAACATGGAGAAACCCCGTCTCTACTAAAAATACAAAAAATTATCCGGGCATGGTGGT GCATGCCTGTAATCCCAGCTACTCAGGAGGCTAAGGCAGGAGAATTGCTTGAACCTGGGA GGCGGAGGTTGCGGTGAGCCAAGATCGTGCCATTGCACCCCAGCCTGGGCAACAAGAGCG AAACTCCGTCTCAAAAAAAAAAAAGGCCAGGCGTGGTGTTTCATGCCTGTAATCCCAGCA CTTTGGGAGGCCGAGGCAGACTGATCACGAGGTCAAGAGATCGATACCATCCTGGCCAAC ATGGTGAAACCCCGTCTCTAATAAAAATACAAAAATTAGCTGGGCGTGGTGGCACATGCC TGTAGTCCCAGCTACTCGGAAGGCTGAGGCAGGAGAATCACTTGAACTGGAAGGCAGGGA GCAGAGATCGCACCTCTGTCCTCCAGCCTGGTGACAGAGCGAGATTCCATCTAAAAAAAA AAGAAAAGAAAAGAAAGAAAAAGTGAAAGTTTTAAGTGCTATGGGGAAAGAAATCAAGTG TGATAAGGGCATCAGGAGTACGAGGGTGAAGACAGGTTGCAGCCCTAAATAGGGAGGTCA GTTATTATTGAGTAAATGAGACCAAAGGGAAGACTTGAAGGAGATGAGAGAATTAGCCAT GCAGAGACCTGGGGGAAGAGAATTCCAGGAAGAAGGATCAGTCAGTGTCAAGGCCTAAGT CAAGAAGGTTAGAAGAGCTAGAAACCATCAAGGGGGAAGAGCGGCAGACATGAAGAGACT GTGTACGGACAGGAAGATCAGGTGCAGCTTTGTAGGCCATTTTTAGAATTTGAGTTGCGT TTTCCTCCGAGTGAAATGAGAAACTGCTGCAGGGTTTTGAGCAGGGGAATGACAAGCTCT TATTTATGTTTTAATAGAGCCTCCCCTCCCCTGCTGCTGCACTGAAAATAGATGGGGGGT GGGGGGAAGGGTGCCCCTGCAGTATTTCTGGCTCAGACCAGTTGGCGGCAGTGAGGTGGT GAGAAGTGGTCAGATTCTGAATGTATTTTGCAGGTAGAGCTGACAGGATTTGCTAATTGA TCGGATATGGGGTATGGAGTGTGGGCGAGAAAGAAAGGAGTCAAAGGTGACAGGTGACTC TGAGGTTTTTGCCATAAGGAACTGGAACGATGCATTAGCCACTGAGCAGGAAAGACTGTG GTGGAAGGGGTTGGGGGGAGAGCAGAAGTTTGCTTGGGACATGTTGAGTCTGAGATGCTT ATTAGCCATCCAAATGTGATAGAGGGGGCAGTCAGGTACACAACTCTGGGTTTGGGAGAA AGGTCTGGATTGGAGAGACATTTGGGAGTTGGCTACATATAGATGGTATCTCAAGCCATG AGACTAGTTGAGACCACCAAAGGAGTGTAGGTGAAATGACGGAGAAGAGAACAGGGTATC TAACGTTAAGGGGAGGAACAAGGAAAGGAGACTGGGAAAGAGCAGCTAGTGAGGTAGGAG TCAACCAAGAGAGGGTGCAGCCCTGGAGGTCAGGTGAAGACAGTGTGTCAAAGAAGGATG

TATGTTCAGGCTGCTGATGGGCCAATAGAGGAGGACTGAGCATTGAGCATTACATGGAGC AAAAACACAGAGGTTCTTGGTGACCTTGACAAGAACAGATGCAGTGGAGAGATGGAGGCC AACGCCTGAGTGGGGTGGGTTCAAGGGAGAATGGGGGAGGGGAACTAGAGGTAGCAAGTA CAGATAACTCTTGCGATGAGTTTTGCTGCAAGTGAGAGCAAATACTGGGACTGAGGGGAA ACCAGGAGATTAAGAGAATTTTTTTTTAATGATGAAAGAAATAACAGTAGGTTTACCTGC GGATGGGGATGATCCAGTAAAAAAGGAAAACATGGCTGGGCACGGTGACTCACACCTGTA ATCCCAGCATTTTGGGAGGGCGAGGTGGATGGATCACCTGAGGTCAAGAGTTCAAGACCA ACCTGGCCAGCATGGTGAAACCCCTTCTCTACTAAAAATACAAAAAAATTAGCCAGGCGT GGTGGTGCACACCTGTAATCCCAGCTACTCAGGAGGCTGAAGCAGGATAATCACTTGAAC TGGGGAGGCAGAGGTTGCAGTGAGCTGAGATGGTGCCACTGCACTCCAGCCTGGGCGACA AGAGTGAAACTCCCCCCGTCTCAAAAAAAAAGAAAGAAAAAGAAAAGGAAAACATGGGTG TCACAGAGGACCACAGAATGGCTTAATTTATGTCCTTGAGCAGGTGAGAAGGAGGAGACC TAGTGCACAAGTGGAAAGACAGATAGGGACCGAAGAATGAGCCAACCTGCTCTCGGCTAG CAGCTGCCCCATAGCAGTGCAGGCATGGGATAGAACTCAGCTCTCCTCAGTCCATGAGGC CTCCTAGCTCTAAAAGCCCGCACCCAAACGCCCTCACCTGGCTCCCAGCCCCTGCCCTAC ACCCCATACCCTGGGGTAGCCGGGCAAGCAGCACTTACATACCCATGCCCATACAGTGCC CATACATGCCCATACAGTGACCTCAGGCCTGGCGGAGGGCACTCCCCTCCGATTTCCACA CTGCTGCCTCCCCAAGGGGATGGATGTTGGCTTGAGAGGGAAGGGGAGTCTGTGATCTGT

GGGCAGGGGTTGCATCAGGGAATAAAG[A/G]TCAGGTAACAGGACGCCTGTGGCGTGAGGCGT TCTGAGAATGGTAATGGGTTGGGTTTGGTTGCCTCTCATGTTCTGGGGGAACGTTGTCTG AACGTGAATCTCTGGTTCTAG

PKLR exon 7 sequence:

[^0]
[^0]: GTTTGATGAAATCCTGGAGGTGAGCGAC [G/A] GCATCATGGTGGCACGGGGGGACCTAGGCAT CGAGATCCCAGCAGAGAAGGTTTTCCTGGCTCAGAAGATGATGATTGGGCGCTGCAACTT GGCGGGCAAGCCTGTTGTCTGTGCCACACAG

