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Energy metabolism is co-determined by
genetic variants in chronic lymphocytic

leukemia and influences drug sensitivity
(Supplementary Materials)

1 Supplementary Methods

1.1 Experimental details for extracellular flux assays

Seahorse XFe96 culture plates (Agilent/Seahorse Bioscience) were prepared by coating each well
with Corning™ Cell-Tak Cell and Tissue Adhesive (BD, 354241) according to the manufacturer’s
recommendations. Additionally, a Seahorse XFe96 cartridge (Agilent, Seahorse Bioscience) was
loaded with 200 pul Calibrant solution (Agilent, Seahorse Bioscience) per well and incubated
overnight in a COs-free atmosphere. The next day, healthy donor-derived, magnetic-bead iso-
lated B cells or CLL peripheral blood mononuclear cells (PBMCs) were thawed from cryo-frozen
aliquots, washed in assay specific medium according to the manufacturer’s recommendations,
and viable cells were automatically counted on a Muse®)Cell Analyzer (Merck Millipore). Cells
were seeded at a density of 2.4 x 10° cells in 175 pl medium per well. Samples were run with 2-7
technical replicates depending on the material’s availability. The ports of the Seahorse cartridge
were loaded with 25 1l of each 80 mM glucose, 9 pM oligomycin and 1M 2DG for the glycolysis
stress test (GST) and 20 pl of 10 uM oligomycin, 22 ul of 15 pM FCCP and 25 pl of 30 pM
antimycin A /rotenone for the mitochondrial stress test (MST). After sensor calibration, assays
were run as prescribed in the manufacturer’s manual to record ECAR (extracellular acidification
rate) and OCR (oxygen consumption rate) over time.

1.2 Quality control criteria for extracellular flux assay measurements

First, we filtered out failed measurements in MST and GST by examining the changes of OCR
and ECAR values after compound application, as follows. In MST, there are four stages, and
each stage is separated by the application of tool compounds. Based on the biology of mi-
tochondrial respiration, the following criteria were defined (see Supplementary Figure S1 for
illustration): the OCR values of stage 2 (after oligomycin and before FCCP injection) should
be lower than the OCR values of stage 1 (before oligomycin injection); the OCR values of stage
3 (after FCCP and before rotenone & antimycin A injection) should be higher or equal to the
OCR values from stage 1; the OCR values of stage 4 (after rotenone & antimycin A injection)
should be lower than the OCR values from stage 1. Similarly, in GST, there are also four stages:
the ECAR values of stage 2 (after glucose and before oligomycin injection) should be higher
than the ECAR values of stage 1 (before glucose injection); the ECAR values of stage 3 (after
oligomycin and before 2-DG injection) should be higher or equal to the ECAR values in stage
2; the ECAR values of stage 4 (after 2-DG injection) should be lower than those in stage 2.
Measurements that did not meet these criteria were considered invalid and set aside.



Next, outlier samples were identified based on the modified Z-score of the OCR and ECAR
values; the modified Z-score (Z;) of a measurement point was defined as Z; = 0.6745 x (z; —
Z)/MAD, with & denoting the median of the values from a certain measurement point across all
samples and MAD the median absolute deviation. If a certain sample contained more than 40%
measurements with modified Z-score higher than 3.5, this sample was considered as an outlier
sample and excluded from the subsequent analysis.

Due to the large number of samples, MST and GST were performed over periods of 18 and 16
days, respectively. Therefore, each day was defined as a batch, and batch effects were estimated
and adjusted. Specifically, to test for associations between bioenergetic features and categorical
variables, i.e., the genomic variants and cell types (B cell VS CLL cell), ANOVA test by including
batch as a blocking factor was used. For associations with continuous variables (i.e., drug
responses and gene expressions) the batch effect in bioenergetic features was firstly adjusted by
using the comBat function in the sva package [1] and then the Pearson correlation test was used.

After the quality control process described above, totally 12 out of 152 samples that did not
pass quality control were excluded from subsequent analysis.

1.3 Summarizing bioenergetic features

Based on the Seahorse assay (illustrated in Supplementary Figure S1), five mitochondrial respiration-
related bioenergetic features (basal respiration, ATP production, proton leak, maximal respira-
tion and spare respiratory capacity) were calculated from the oxygen consumption rate (OCR)
time course during a mitochondrial stress test (MST), and three glycolysis-related features (gly-
colysis, glycolytic capacity and glycolytic reserve) were calculated from the extracellular acidifi-
cation rate (ECAR) during a glycolysis stress test (GST). The stress tests employ metabolically
interfering compounds as described in the Supplementary Methods. In addition, the baseline
OCR and ECAR values and the ECAR/OCR values were also defined as bioenergetic features.

1.4 Multi-omics profiling and ex-vivo drug sensitivity assay

Multi-omics profiling, including whole-exome sequencing, targeted sequencing, DNA methyla-
tion profiling and RNA sequencing, were previously performed on the same set of patient sam-
ples; in addition, the sensitivities of these samples to a panel of 63 small molecule compounds
at 5 concentrations each were characterized [2]. Clinical outcomes of those sample were also
recorded. Those data are available in the R data package BloodCancerMultiOmics2017, from
the Bioconductor project (http://bioconductor.org).

1.5 Gene enrichment analysis

For the n = 120 patient samples for which we had both bioenergetic data and RNASeq data, the
RNAseq data were used for identifying expression signatures of IGHV mutation status and for
defining biological meanings of gene expression principal components selected by multivariate
regression models. To characterize expression signatures of IGHV status, differentially expressed
genes (FDR = 10%, method of Benjamini and Hochberg) were firstly identified by using DE-
Seq2 [3] and then raked by their test statistics. As for defining the biological meanings of gene
expression principal component, genes were ranked by their loadings on each principal compo-
nents. Gene set enrichment analysis was then performed on the ranked lists using the Parametric
Analysis of Gene Set Enrichment (PAGE) method [4] with the KEGG and H gene set selections
from the MSigDB database (http://software.broadinstitute.org/gsea/msigdb).

1.6 Penalized multivariate regression

We performed multivariate regression to explain bioenergetic features by a large feature data
space. We used a Gaussian linear model with L1-penalty (i.e., lasso regression) as implemented



in the R package glmnet version 2.0 with mixing parameter o = 1 [5]. Before analysis the
expression data were normalized and transformed using the varianceStabilizing Transformation
function from DESeq2, and both expression and methylation data were filtered to include only
the top 5000 most variable features each. Genetic mutations were only included in the model
if present in at least 5 samples. Features with more than 20% missing values were excluded.
Remaining missing values were imputed by the mean for methylation data and by the most
common mutation status for genetic data.

As predictors in the lasso model the genetic mutations and IGHV status (coded as 0-1),
demographics (age, sex) and the top 20 principal components of gene expression and methylation
data were used. All features were scaled to unit variance and mean zero before using lasso to
achieve fair treatment of all predictors by the penalty constraint. To compare explanatory
power of different datasets a separate model was fit including only predictors of one omic type
at a time as well as a joint model including all predictors. Using 3-fold cross-validation, the
optimal penalty parameter \ was chosen to minimize the cross-validated R? of the model using
the function cv.glmnet. The cross-validation process was repeated 100 times for each model to
reduce the model variance, and then the average coefficient and feature selection frequency over
100 repeats were calculated. As a measure of explained variance, the reduction in cross-validated
mean squared error relative to the null model was calculated and then averaged over 100 repeats.
For single features, i.e. IGHV the R? from a standard linear model was used as corresponding
quantity.



2 Supplementary Figures
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Figure S1: Representative scheme of the glycolytic stress test (left panel) and the mitochondrial
stress test (right panel) depicting the extracellular acidification rate (ECAR) and
the oxygen consumption rate (OCR), respectively. The calculation of the different
metabolic parameters after sequential injection of metabolically active compounds
is illustrated by colored boxes as indicated. The grey box symbolizes non-glycolytic
acidification as well as non-mitochondrial respiration as background.
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Figure S3: Gene expression signatures of B-cell receptor stimulation queried from two
public datasets (A, C) Hallmark gene sets that are significantly enriched (method
of Benjamini and Hochberg for FDR = 1%) among genes differentially expressed after
BCR stimulation by IgM (GEO accession ID: GSE49695) or by CPG (GEO accession
ID: GSE30105). (B,D) The heatmaps show the z-score of the expression values of
glycolysis pathway genes that are differentially expressed after BCR stimulation by
IgM or CPG.
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Figure S4: Beeswarm plots for all significant associations (method of Benjamini and Hochberg
for FDR = 5%) between genetic variants and energy bioenergetic features
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3 Supplementary Tables

Table S1: Background information of patients included in the study. (n.d. - no data available)
No. PatientID Sex IGHV Age Methylation_Cluster Pretreated Type of treatment

1 HO17 m U 56 LP no
2 HO15 f U 62 LP no
3 H023 f U 70 LP yes Chemoimmunotherapy
4 H033 f M 62 HP no
5 H035 f M 79 1P yes Chemoimmunotherapy
6 HO036 f M 75 HP no
7 HO040 f M 83 1P no
8 HO042 f U 71 LP yes Chemoimmunotherapy
9 HO046 m M 88 HP no
10 HO014 f U 86 LP yes Chemoimmunotherapy
11 HO028 f M 72 HP no
12 H062 m M 53 n.d. no
13 HO065 f U 7 LP yes Chemoimmunotherapy
14  HO10 f U 72 LP no
15  HO027 m U 57 LP no
16  HO069 f U 76 LP yes Chemoimmunotherapy
17 HO063 f M 49 1P no
18  HO082 m M 82 1P no
19  HO72 m U 57 1P no
20  HO56 m M 83 HP no
21 HO21 m M 49 HP no
22 HO11 f M 72 HP no
23 HO78 m U 68 LP yes Chemoimmunotherapy
24 HO12 f U 61 LP yes Chemoimmunotherapy
25  HO16 m M 55 1P no
26 HO57 m M 66 HP no
27 HO45 m U 90 LP yes Chemoimmunotherapy
28  HO13 m U 7 LP yes Chemoimmunotherapy
29  HO094 m M 45 HP no
30  HO60 m U 75 HP no
31  HO039 f M 54 HP no
32 HO090 f M 70 1P yes Chemoimmunotherapy
33  HO095 f U 52 LP no
34  HO029 f M 75 1P yes Chemoimmunotherapy
35  HO020 m M 64 HP no
36  HO19 f U 70 1P yes Chemoimmunotherapy
37  HO041 m M 75 HP no
38  H100 m M 74 HP no
39 HO032 m U 67 LP yes Chemoimmunotherapy
40 H101 f M 72 HP no
41 H102 f U 78 LP no
42 HO044 m U 59 1P yes Chemoimmunotherapy
43  HO83 m n.d. 69 HP no
44  H104 m U 79 LP no
45  HO058 f M 74 1P no
46  HO77 f U 69 LP no
47  HO031 f M 62 1P no
48 HO005 m M 75 IP yes Chemoimmunotherapy
49  H105 m M 49 HP no
50  HO81 f M 64 HP no
51 H106 m M 70 HP no
52  HO054 f M 49 HP no
53  HO89 f M 54 HP no
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Table S2: ANOVA test results (adjusted for batch effect) of bioenergetic features between CLL
cells and normal B cells

Seahorse measurement p Difference of mean adjusted p
ATP production 0.000 15.333 0.000
basal respiration 0.000 16.308 0.000
ECAR 0.013 -2.890 0.016
ECAR/OCR 0.000 -0.622 0.000
glycolysis 0.972 -0.044 0.972
glycolytic capacity 0.000 13.896 0.000
glycolytic reserve 0.000 13.940 0.000
maximal respiration 0.000 58.044 0.000
OCR 0.000 17.166 0.000
proton leak 0.629 0.975 0.692
spare respiratory capacity 0.000 41.736 0.000

Table S3: Association test results of bioenergetic features related to pretreatment status

Seahorse mearuement p value adjusted p (I GHpVVl?)lll(l)ike 4 [ G?ﬁ‘]\l/lsﬁfjdfe d)
ATP production 0.755 0.831 0.867 0.934
basal respiration 0.641 0.821 0.934 0.934
ECAR 0.672 0.821 0.426 0.670
ECAR/OCR 0.245 0.385 0.271 0.597
glycolysis 0.065 0.185 0.229 0.597
glycolytic capacity 0.016 0.174 0.083 0.597
glycolytic reserve 0.037 0.185 0.114 0.597
maximal respiration 0.101 0.185 0.489 0.672
OCR 0.098 0.185 0.224 0.597
proton leak 0.851 0.851 0.925 0.934
spare respiratory capacity 0.085 0.185 0.409 0.670
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Table S4: Multivariate Cox regression model for time to treatment with glycolytic reserve as a

covariate

factor p value hazard ratio lower 95% CI upper 95% CI
age 0.0397  0.77 0.61 0.99
trisomy12 0.594 1.3 0.53 3.1

11g22.3 deletions 0.622 1.2 0.55 2.7

17p13 deletions 0.556 1.3 0.55 3

TP53 mutations  0.0125 2.6 1.2 5.6

U-CLL 0.108 1.8 0.88 3.6

glycolytic reserve 0.095 1 0.99 1.1

Table S5: Multivariate Cox regression model for time to treatment with maximal respiration as

a covariate

factor p value hazard ratio lower 95% CI upper 95% CI
age 0.0169  0.77 0.62 0.95
trisomy12 0.336 1.5 0.66 3.3

11g22.3 deletions 0.18 1.6 0.79 3.4

17p13 deletions 0.581 1.3 0.54 3

TP53 mutations 0.00532 3 1.4 6.4

U-CLL 0.0354 2 1 3.8

maximal respiration 0.0743 1 1 1

Table S6: Multivariate Cox regression model for time to treatment with spare respiratory ca-

pacity as a covariate

factor p value hazard ratio lower 95% CI upper 95% CI
age 0.0191  0.77 0.62 0.96
trisomy12 0.328 1.5 0.67 3.4

11q22.3 deletions 0.187 1.6 0.79 3.4

17p13 deletions 0.572 1.3 0.54 3

TP53 mutations 0.00743 2.9 1.3 6.1

U-CLL 0.0332 2 1.1 3.8

spare respiratory capacity 0.0672 1 1 1
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Table S7: Correlation tests between each Seahorse measurements and lymphocyte doubling time

Seahorse mearuement p value adjusted p (1 GI—?VVEll)lllcl)ike 4 [ (?ﬁll\lflsgfjcie d)
ATP production 0.170 0.442 0.519 0.815
basal respiration 0.666 0.814 0.786 0.959
ECAR 0.838 0.862 0.435 0.815
ECAR/OCR 0.862 0.862 0.161 0.815
glycolysis 0.032 0.199 0.778 0.959
glycolytic capacity 0.036 0.199 0.488 0.815
glycolytic reserve 0.099 0.364 0.452 0.815
maximal respiration 0.505 0.729 0.959 0.959
OCR 0.201 0.442 0.143 0.815
proton leak 0.330 0.605 0.269 0.815
spare respiratory capacity 0.530 0.729 0.882 0.959

Table S8: Associations of bioenergetic features with CD38 and IGTA4(CD49d) expression

Measurement Gene p value (I G}?Vvilllgike d) adjusted p value ?;1 (‘]}lﬁt\?dbﬁ) :lielg()e
glycolytic capacity CD38 0.000 0.001 0.001 0.021
glycolytic reserve CD38 0.000 0.003 0.003 0.033
glycolysis CD38 0.001 0.019 0.004 0.083
maximal respiration CD38 0.002 0.032 0.009 0.083
glycolysis ITGA4 0.003 0.028 0.013 0.083
ECAR CD38 0.005 0.009 0.015 0.067
spare respiratory capacity CD38 0.005 0.072 0.015 0.121
basal respiration ITGA4 0.005 0.028 0.015 0.083
basal respiration CD38 0.006 0.027 0.015 0.083
OCR CD38 0.009 0.070 0.021 0.121
ATP production CD38 0.013 0.070 0.026 0.121
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