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The manuscript by Liu and colleagues, published in
this issue of Haematologica, reports the identifica-
tion of novel compounds able to increase hepcidin

expression in normal mice as well as in animals affected
by hemochromatosis and β-thalassemia intermedia (or
non-transfusion-dependent thalassemia) (Figure 1A).1
Hepcidin is the master regulator of iron secreted from

the liver and acts on ferroportin, a transmembrane pro-
tein that functions as an iron exporter.2,3 Once hepcidin
binds ferroportin, the complex is rapidly degraded, pre-
venting iron egress.2,3 Ferroportin is expressed in many
types of cells, including enterocytes and macrophages.2,3
Therefore, the relative abundance of hepcidin in the cir-
culation and ferroportin on cell membranes control iron
absorption (from enterocytes) and iron recycling (from
macrophages).2,3
Hepcidin expression is regulated by iron, inflammation

and erythropoiesis.2,3 With regard to iron-mediated control
of hepcidin, this is achieved through at least two mecha-
nisms. The first senses the amount of intracellular iron in
liver sinusoidal endothelial cells and responds by synthesiz-
ing BMP6, and other similar ligands, belonging to the
TGFβ-like family.2-4 Increased intracellular concentration of
iron leads to secretion of BMP6 from these cells.2-4 As a con-
sequence, BMP6 binds and activates receptors that trigger
phosphorylation of a SMAD complex and stimulate hep-
cidin expression in hepatic cells.2-4
The second mechanism senses the iron in circulation

by recognizing iron-loaded transferrin molecules.3

Molecules such as HFE, transferrin receptor-2, and others
communicate intracellularly when the transferrin satura-
tion levels increase.3 It has been hypothesized that this
sensing complex potentiates the SMAD complex activat-
ed by BMP6.5 Alternatively, or in addition, it has been
suggested that this complex acts upon hepcidin expres-
sion by decreasing the ERK1/2 pathway.10
Under conditions that require enhanced red cell pro-

duction (as a consequence of a transient or chronic ane-
mia), hepcidin synthesis is normally suppressed.2 A few
factors have been identified that could play a role in this
mechanism, such as erythroferrone and platelet-derived
growth factor BB.7,8 In particular, erythroferrone is secret-
ed by erythroid cells and acts as a trap ligand, limiting the
activity of BMP6 and other similar molecules.9
Another player in the regulation of hepcidin is the mol-

ecule matriptase-2 (or TMPRSS6).2,3 This molecule pre-
vents hepcidin overexpression, which could lead to
hypoferremia and anemia.3,10 Although it is unclear which
pathways and molecules control TMPRSS6, it has been
shown that TMPRSS6 is required for erythropoietin-
mediated hepcidin suppression in mice.11,12
In primary forms of hemochromatosis, patients show

excessive iron absorption and suffer from iron overload
(Figure 1A).7,8 This happens when hepcidin, or other
genes that control its expression, are mutated.2,3 In sec-
ondary forms of hemochromatosis (as in β-thalassemia),
the anemia triggers increased iron absorption, likely by
increased expression of erythroferrone and other hypox-
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ia-related molecules that converge on suppressing hep-
cidin synthesis or increasing ferroportin expression
(Figure 1A).2,3,13

Conversely, mutations in the TMPRSS6 gene lead to
overexpression of hepcidin. In this case, patients suffer
from a condition indicated as iron-refractory iron defi-
ciency anemia or IRIDA.14 These individuals suffer from a
form of anemia that typically does not improve with oral
iron treatment, but requires parenteral iron administra-
tion.14

The elucidation of these pathways and their associa-
tion with disease led to the development of pharmacolog-
ical compounds that increase hepcidin expression, mimic
its activity, or decrease ferroportin activity, which can
decrease iron absorption and improve iron overload in

primary and secondary forms of hemochromatosis
(Figure 1A).15,16 Intriguingly, the same drugs also showed
beneficial effects on anemia in animal models of non-
transfusion-dependent thalassemia (Figure 1A).13,17,18 In
this case, it was observed that these drugs not only
decreased iron absorption, but also erythroid iron
intake.13,17,18 In thalassemic erythroid progenitor cells, this
can reduce the detrimental effects of oxidative stress trig-
gered by the excess of iron and heme not included in nor-
mal hemoglobin molecules.13,17,18 This improves the quali-
ty and lifespan of red blood cells, and increases hemoglo-
bin levels.13,17,18 The overall effect is to improve ineffective
erythropoiesis and the associated iron overload (Figure
1A).
So far, most of the compounds identified as leading to
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Figure 1. Role of hepcidin and novel thiazolidinone compounds in the treatment of hemochromatosis and β-thalassemia. (A) Relationship between disease, genet-
ic mutations, hepcidin levels, drug administration and phenotype in primary and secondary forms of hemochromatosis. (B) Potential mechanisms of action and ther-
apeutic effects of new thiazolidinone compounds in hemochromatosis and β-thalassemia.
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increased hepcidin expression show a very specific activ-
ity (i.e. hepcidin mimetics or ferroportin inhibitors).15,19 In
general, these drugs belong to one of four main cate-
gories: (i) hepcidin mimetics; (ii) hepcidin inducers; (iii)
ferroportin inhibitors; and (iv) erythroferrone inhibitors.
TMPRSS6 inhibitors can be defined as hepcidin inducers
and/or BMP/SMAD pathway activators. 
The ideal drug should be administered orally or injected

subcutaneously very infrequently, having a long lifespan
and prolonged activity. The drug should also show a large
spectrum of activity, so that it can limit iron absorption in
disorders such as non-transfusion-dependent thalassemia
and HFE-related hemochromatosis, but also in conditions
in which iron absorption is further increased (e.g., β-tha-
lassemia major), or in which iron absorption needs to be
further suppressed to achieve a significant benefit (as in
polycythemia vera).15,18,19 The drug should also have no
side effects, particularly under conditions of chronic
administration. Obviously, low cost of production would
also be desirable. Furthermore, and equally important,
the drug should have a clear mechanism of action. 
The compounds described by Liu and colleagues are

derivatives of thiazolidinones, a group of versatile drugs
which are also being developed for numerous clinical
applications, such as anti-tuberculosis, antimicrobial,
anti-cancer, anti-inflammatory, and antiviral agents.20

These new compounds increase expression of hepcidin
and improve several parameters (related to both iron
overload and anemia) in mice affected by primary and
secondary forms of hemochromatosis (Figure 1B).1

In particular, in mice affected by hemochromatosis, the
compounds described by Liu and colleagues ameliorated
abnormal iron parameters, improved iron overload, and
induced iron redistribution from the liver to the spleen. In
mice affected by non-transfusion-dependent thalassemia,
these compounds also ameliorated iron overload. In addi-
tion, as ineffective erythropoiesis was also improved, red
blood cell production and hemoglobin levels increased
(Figure 1B). 
As described in their article, these novel thiazolidinone

derivatives appear to act on hepcidin expression through
a variety of mechanisms, such as promoting Smad1/5/8
signaling, repressing Erk1/2 phosphorylation and decreas-
ing Tmprss6 activity (Figure 1B). Additionally, these com-
pounds seemed to target potential erythroid regulators
(such as erythroferrone), thereby further contributing to
hepcidin upregulation (Figure 1B). However, the target
and mechanism of action of these compounds have not
been completely elucidated. 
Given their many effects, there is some concern that

these drugs may be relatively unselective and affect addi-
tional targets and pathways. This would be even more
relevant if these drugs were to become used in a chronic
fashion. Future studies should, therefore, focus on deter-
mining how these drugs interact with their target and
exclude unwanted effects. 
In summary, these novel compounds are very promis-

ing and expand the armamentarium of drugs that could
benefit patients affected by disorders in which increased
hepcidin expression is desirable. If proven to be safe,
selective, and effective, their use will increase the chance
that one or more compounds will reach the clinic, while
competition between different drugs will likely diminish
costs. 
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