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In spite of the large number of reports showing
that hyperhomocysteinemia (HHcy) is an inde-
pendent risk factor for atherosclerosis and arter-

ial occlusive disease, this metabolite of the methio-
nine pathway is measured in relatively few labora-
tories and its importance is not fully appreciated.
This may be due to a number of reasons. First,
diagnosis of HHcy is not straightforward because it
requires a combination of fasting and post-methio-
nine load measurement of total plasma homocys-
teine, which may be cumbersome in outpatients
and require determination of local normality ranges.
Second, classifying individual patients as being
hyperhomocysteinemic has been complicated by
recent information that the risk contributed by
homocysteine is graded across the distribution of
homocysteine values, reproducing a situation simi-
lar to that of cholesterol in the era preceding stan-
dardization of cholesterol assays. Third, the com-

bined effect on homocysteine levels of vitamin sta-
tus and genetic abnormalities of the enzymes
involved in the methionine pathway is not yet fully
appreciated. Last but not least, the high prevalence
of HHcy in patients with thrombotic diseases com-
bined with our poor understanding of the specific
thrombogenic mechanisms involved underlines the
urgent need for identification of a convincing
cause-effect relationship. 

Recent data strongly suggest that mild HHcy is
also involved in the pathogenesis of venous throm-
boembolic disease. Thus, HHcy and the antiphos-
pholipid antibody syndrome at present represent
the only examples of a biochemical abnormality
strongly associated with both venous and arterial
occlusive disease. Unlike the antiphospholipid anti-
body syndrome, however, HHcy has the potential
to be cured by innocuous vitamin supplementa-
tion.

Background and Objective. In spite of the large
number of reports showing that hyperhomocys-
teinemia (HHcy) is an independent risk factor for
atherosclerosis and arterial occlusive disease, this
metabolite of the methionine pathway is measured
in relatively few laboratories and its importance is
not fully appreciated. Recent data strongly suggest
that mild HHcy is also involved in the pathogenesis
of venous thromboembolic disease. The aim of
this paper is to analyze the most recent advances
in this field.

Evidence and Information Sources. The material
examined in the present review includes articles
and abstracts published in journals covered by the
Science Citation Index® and Medline®. In addition
the authors of the present article have been work-
ing in the field of mild HHcy as cause of venous
thromboembolic disease. 

State of Art and Perspectives. The studies exam-
ined provide very strong evidence supporting the
role of moderate HHcy in the development of pre-
mature and/or recurrent venous thromboembolic

disease. High plasma homocysteine levels are also
a risk factor for deep vein thrombosis in the gener-
al population. Folic acid fortification of food has
been proposed as a major tool for reducing coro-
nary artery disease mortality in the United States.
Vitamin supplementation may also reduce recur-
rence of venous thromboembolic disease in
patients with HHcy. At the present time, however,
the clinical efficacy of this approach has not been
tested. In addition, the bulk of evidence indicates
that fasting total homocysteine determinations
can identify up to 50% of the total population of
hyperhomocysteinemic subjects. Patients with iso-
lated methionine intolerance may benefit from vit-
amin B6 supplementation. Homocysteine-lowering
vascular disease prevention trials are urgently
needed. Such controlled studies, however, should
not focus exclusively on fasting homocysteine
determinations and folic acid monotherapy.
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ABSTRACT



Methionine metabolism
Homocysteine is a non-protein forming, sulfur

amino acid whose metabolism is at the intersection
of two metabolic pathways: remethylation and
transsulfuration.1 In remethylation, homocysteine
acquires a methyl group to form methionine. In one
de novo route 5,10-methylenetetrahydrofolate,
formed from tetrahydrofolate and serin 3-carbon
(PLP-dependent serine hydroxymethyl-transferase,
SHMT), is reduced to 5 methyltetrahydrofolate in a
physiologically irreversible reaction catalyzed by
methylenetetrahydrofolate reductase (MTHFR), an
enzyme which contains FAD as a prosthetic group.
5-methyltetrahydrofolate can also be obtained
from the circulation since it is the major form of
folate in serum and folate-binding proteins or
receptors for its internalization are present on most
cells. In the next step, the methyl group of 5-
methyltetrahydrofolate is transferred to homocys-
teine in a reaction which is catalyzed by a B12-
dependent methyltransferase. The alternative route
of homocysteine methylation is through a transfer
of a methyl group from betaine, which is catalyzed
by a B12 independent methyltransferase (betaine:
homocysteine methyltransferase, BHMT). The reac-
tion with N-5-methyltetrahydrofolate occurs in all
tissues, while the reaction with betaine is confined
mainly to the liver and depends on dietary choline.
Most probably due to limited tissue availability,2

BHMT is not capable of handling excessive homo-
cysteine accumulation; as a result, in the congenital
and acquired defects affecting B12 and the folate-
dependent remethylation pathway, the alternative
route for conversion of homocysteine to methion-
ine is unable to compensate sufficiently and HHcy
results. On the other hand, administration of
betaine to homocystinuric patients may improve
their clinical condition. A considerable proportion
of methionine is then activated by ATP and methio-
nine adenosyltransferase (MAT) to form S-adeno-
sylmethionine (SAM).3 SAM serves primarily as a
universal methyl donor to a variety of acceptors,
including guanidinoacetate, glycine, nucleic acids,
norepinephrine, phosphatidyl-ethanolamine, and
hormones. S-adenosylhomocysteine (SAH), the by-
product of these methylation reactions, is subse-
quently hydrolyzed by SAH hydrolase, thus regener-
ating homocysteine, which then becomes available
to start a new cycle of methyl-group transfer. 

In the transsulfuration pathway, homocysteine con-
denses with serine to form cystathionine in an irre-
versible reaction catalyzed by a pyridoxal-5'-phos-
phate (PLP)-containing enzyme, cystathionine b-
synthase (CBS). Human CBS has been cloned
recently.4 and the gene is located on chromosome
21.5 Cystathionine is hydrolyzed by a second PLP-
containing enzyme, b-cystathionase, to form cys-
teine and a-ketobutyrate. Excess cysteine is oxidized
to taurine and inorganic sulfates or excreted in the

urine. Thus, in addition to the synthesis of cysteine,
this transsulfuration pathway effectively catabolizes
excess homocysteine which is not required for
methyltransfer and delivers sulfate for the synthesis
of heparin, heparan sulfate, dermatan sulfate and
chondroitin sulfate. 

It is important to note that since homocysteine is
not a normal dietary constituent, the sole source of
homocysteine is methionine. In mammalian liver
approximately half of the methionine entering the
methionine cycle undergoes remethylation, while
the other half is irreversibly committed to cysteine
synthesis through the trannsulfuration pathway.6

SAM appears to play a key role in regulating the
flow of homocysteine towards remethylation or
transsulfuration by interacting with CBS, MTHRF
and BHMT. When intracellular concentrations of
SAM are relatively high, CBS is allosterically activat-
ed and homocysteine is diverted to transsulfura-
tion.7,8 Conversely, both remethylation pathways
are inhibited by SAM.9,10 Regulation of methionine
metabolism is also affected by tissue levels of indi-
vidual enzymes, induction of their synthesis by hor-
mones and dietary methionine, as well as by the
action of other effector molecules such as SAH act-
ing on BHMT, MTHFR and CBS.11

Due to the existence of a cellular homocysteine
export mechanism, plasma normally contains a
small amount of homocysteine (~10 µmol/L12).
This export mechanism complements the catabo-
lism of homocysteine through transsulfuration;
together these mechanisms help maintain low
intracellular concentrations of this potentially cyto-
toxic sulfur amino acid. In HHcy, plasma homocys-
teine levels are elevated and, barring renal insuffi-
ciency,13 the occurrence of HHcy indicates that
homocysteine metabolism has in some way been
disrupted and that the export mechanism is bring-
ing excess homocysteine that has accumulated in
the cell into the blood. This limits intracellular toxi-
city, but leaves vascular tissue exposed to the possi-
bly deleterious effects of excess homocysteine.1

Pathogenesis of hyperhomocysteinemia
The most severe cases of HHcy are due to homo-

zygous defects in genes encoding for enzymes of
homocysteine metabolism. In such cases, a defect
of an enzyme involved in either homocysteine
remethylation or transsulfuration leads to large ele-
vations of homocysteine in the blood and urine. The
classic form of this disorder – homocystinuria – is
that caused by a homozygous, or compound het-
erozygous, defective gene encoding for CBS, a con-
dition in which fasting plasma homocysteine con-
centrations can be as high as 400 µmol/L.1 2

Depending on the presence of CBS mutants with
reduced affinity for the coenzyme,14 two different
forms of the disease can be distinguished on the
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basis of responsiveness to treatment with large
dosages of pyridoxal-phosphate (vitamin B6), the
CBS cofactor.15 Several cystathionine b-synthase
mutations are known and the most frequent are
833T→C and 919G→A (located in exon 8) and
1224-2A→C, which causes the skipping of the
entire exon 12. The 833T→C mutation is present in
several ethnic groups; 919G→A has been almost
exclusively reported in patients of Celtic origin. In 20
homocystinuric patients from 16 unrelated Italian
families, characterization of 24 of 30 independent
alleles disclosed 13 mutations, including 11 novel
ones. Two previously reported mutations (833T→C
and 341C→T) were found in 26.6% and 16.6% of
the alleles. Hence most of the mutations are private
and clustered on exons 8, 3 and 1.16,17 Homozygous
defects of other genes that lead to similar elevations
in plasma homocysteine concentration include
those encoding for methylene tetrahydrofolate
reductase (MTHFR) or for any of the enzymes which
participate in the synthesis of methylated vitamin
B12.18-24 Genetic impairments of vitamin B12-depen-
dent methyltetrahydrofolate:homocysteine methyl-
transferase have not been reported.12

MTHFR deficiency was first described by Mudd et
al.21 in two unrelated teen-agers. In contrast to
patients with CBS deficiency, these patients had
slightly reduced methionine levels in their plasma
and normal CBS activity in skin fibroblast extracts.
Although the HHcy associated with this defect is
less severe than in homozygous CBS deficiency, the
prognosis for these patients is generally poorer than
in CBS deficiency,25 due at least in part to unre-
sponsiveness to any form of treatment in MTHFR
deficiency. Most patients with MTHFR deficiency
have hypomethioninemia, but in contrast to
patients whose hypomethioninemia is due to
inborn errors of vitamin B12 metabolism and who
develop severe megaloblastic anemia,26 patients
with MTHFR deficiency do not become anemic. 

Expression of MTHFR deficiency is however vari-
able. Mutations that result in severely reduced
MTHFR enzyme activity are rare and associated
with HHcy and clinical manifestations of varying
severity.27-29 However, recent evidence indicates a
prevalent variant of MTHFR that demonstrates
reduced activity. In 1988, Kang et al.24 reported that
two unrelated patients with moderate HHcy and
low folate levels had a variant MTHFR that is dis-
tinguished from the normal enzyme (as measured
in lymphocyte extracts) by its lower specific activity
(50%) and its thermolability. In subsequent studies,
Kang et al.30,31 demonstrated that MTHFR thermola-
bility is an inherited recessive trait which is present
in approximately 5% of the general population and
17% of patients with proven coronary artery dis-
ease, but is not associated with neurological com-
plications. Impaired MTHFR activity due to the
thermolabile form of the enzyme has been observed

in as many as 28% of hyperhomocysteinemic
patients with premature vascular disease.32 The
cDNA for human MTHFR has recently been isolat-
ed28 and it has been shown that MTHFR thermola-
bility is caused by a point mutation (677C to T
transition) at a polymorphic site, resulting in a
valine substitution for an alanine in this enzyme.33

The mutation was found in 38% of unselected chro-
mosomes from 57 French-Canadian individuals;
the homozygous state of the mutation was present
in 12% of these subjects and correlated with signifi-
cantly raised tHcy.33 Preliminary evidence indicates
that the frequency of homozygotes for the 677C→T
mutation may vary significantly in populations from
different geographic areas (from 1.4% to 15%, 34).
In a Dutch population, homozygosity for this muta-
tion was 15% and 5% in 60 vascular patients and
111 controls, respectively.35 In 289 Italian controls
and 64 patients with arterial or venous occlusive
disease, we found a prevalence of homozygosity of
16.2% in controls, of 62.1% in patients with moder-
ate fasting HHcy, and 2.8% in the remaining
patients with normal fasting HHcy.36 Interestingly,
none of 7 patients with isolated methionine intoler-
ance was homozygous for the mutation.37

The impact of the MTHFR thermolabile variant
on plasma HHcy is as yet unclear. The HHcy seen
in Kang et al.’s original patients24 was associated
with low folate plasma levels, and folate supple-
mentation reduced homocysteine to normal levels.
In a recent study an interaction between the
MTHFR thermolability genotype and folate status
was demonstrated.38 When plasma folate concen-
trations were > 15.4 nmol/L, plasma homocysteine
levels were low and unrelated to the MTHFR geno-
type. However, when plasma folate concentrations
were <15.4 nmol/L, plasma homocysteine levels
were significantly higher in homozygotes for the ala
to val mutation than in those with the normal geno-
type.38 Since MTHFR is part of the remethylation
pathway, HHcy caused by homozygosity of the ala
to val mutation will be manifested under fasting
conditions and not after a methionine load. These
data imply that phenotypic expression of the
MTHFR genotypes is dependent on the availability
of folate, suggesting that homozygotes for the ther-
molabile genotype might have a higher folate
requirement than individuals with a normal geno-
type. Interestingly, the presence of the MTHFR ther-
molabile mutation was not found to be a risk fac-
tor for coronary artery disease in a large Australian
population.39

Because plasma homocysteine determinations
were not carried out in this study, this finding does
not rule out HHcy as a risk factor for coronary
artery disease, but it does rather suggest vitamin
status as a major determinant of plasma homocys-
teine levels, even in the presence of mild enzymatic
defects of methionine metabolism. Since FAD is an

213Hyperhomocysteinemia and venous thrombosis



essential prosthetic group for MTHFR activity, it
stands to reason that vitamin B2 status is also a
determinant of plasma homocysteine levels. 

The interrelationship between genetic defects of
the enzymes of the methionine metabolic pathway,
nutritional status and the expression of HHcy is
complex and undergoes fine tuning.40,41 Even mild
vitamin deficiencies may be responsible for moder-
ate HHcy.

Plasma homocysteine concentrations in these
instances may differ depending on which arm of
the two metabolic pathways of homocysteine
metabolism is defective.1 An impairment in the
remethylation pathway, even if it is mild, will lead
to a substantial increase in plasma homocysteine
concentrations under fasting conditions. This
impairment may be due to inadequate status of
folate or vitamin B12 or B2, or to defects in the gene
encoding for MTHFR.1,24,42-55 In contrast, a mild
impairment in the transsulfuration pathway will
lead, at most, to a very slight increase in fasting
plasma homocysteine levels. This mild impairment,
which may be due to heterozygous defects in the
CBS gene or inadequate levels of vitamin B6,1,42,56-60 is
normally identified by an abnormal increase in
plasma homocysteine after a methionine loading
test or following a meal.42,60-63 The different pheno-
types expected in remethylation and transsulfura-
tion defects are supported by studies conducted in
vitamin deficient animal models. Thus, fasting plas-
ma homocysteine concentration is 10-fold higher in
folate deficient rats than in folate supplemented
rats.64 This high concentration of homocysteine in
plasma was due in part to lack of sufficient S-
adenosylmethionine for the activation of the
transsulfuration pathway.64 In both humans and
rats, mild vitamin B6 deficiency was associated with
normal fasting plasma homocysteine levels. Fasting
HHcy in vitamin B6 deficiency occurs only if the
deficiency is severe and sustained over a long period
of time.58 After a methionine load, the homocys-
teine concentration increased 35-fold in rats that
were vitamin B6 deficient, compared to about 4-
fold in control rats and less than 35% in folate defi-
cient rats.64

Evidence of two distinct forms of HHcy in
humans derives from preliminary data obtained in
participants in the Framingham Family Heart
Study.65 For each of 274 participants, plasma
homocysteine concentrations were measured at
fasting and 4 hours after a methionine load. Using
the 90% percentile values to define HHcy and con-
sidering the post-methionine load (PML) change in
homocysteine from baseline levels, equal propor-
tions of the participants had either fasting or PML
HHcy without the other, whereas only 12% had
both.65

Assays of plasma homocysteine
Homocysteine circulates in plasma as free homo-

cysteine and as the homocysteinyl moiety of the
disulfides homocystine and cysteine-homocysteine,
both free and bound to protein. The concentration
of free reduced homocysteine is very low and
accounts for less than 5% of total plasma homocys-
teine in normal subjects.66 Hence in the assessment
of HHcy, it is important that all plasma forms of
homocysteine be measured.

A variety of assay methods have been described,
with normality ranges which are slightly, but signifi-
cantly, different (reviewed in refs. #67, 68). Homo-
cysteine levels are different in plasma and serum, in
women and men, and there is an increase in homo-
cysteine levels with increasing age.69,70 These differ-
ences may be related to variations in vitamin status
and should be kept in mind in the identification of
hyperhomocysteinemic individuals. 

Confusion about the dependency of HHcy – par-
ticularly of mild to moderate degree HHcy – on vit-
amin status is largely due to non-standardization of
preanalytical conditions. Baseline and fasting homo-
cysteine levels are not synonymous; whereas fasting
homocysteine is correlated in both patients and
controls with the levels of vitamin B12 and folate
and to a much lesser – if any – degree to pyridoxal
phosphate (vitamin B6) levels, the same may not be
true for so-called baseline homocysteine. Oral
methionine loading (usually 0.1 g/kg body weight)
is used to detect heterozygotes for CBS deficiency,
who usually but not always71 respond with abnor-
mally high elevations in post-load homocysteine
levels. Plasma levels of methionine and of reduced
free homocsyteine reach a peak within 2 hours,72

while homocysteine is highest only after 6 to 8
hours. Neither methionine clearance nor post-load
total homocysteine is affected by excess dietary
methionine in normal individuals.73

Post-methionine load homocysteine levels have
been measured between 4 and 8 hours after
methionine intake in different studies, which may
have implications in the reported prevalence of
abnormalities of homocysteine transsufuration.
Even more importantly, post-load homocysteine
determinations should be expressed as the net dif-
ference over fasting levels for accurate detection of
HHcy resulting from defective transsulfuration. 

To facilitate expanded application of the methio-
nine loading test, a shortened 2-hour protocol was
recently validated.74

The 2-hour plasma homocysteine level accounted
for > 92% of the variability in the 4-hour plasma
homocysteine level.74 The 2-hour loading test may
offer distinct advantages in terms of participant
acceptability and logistical considerations in epi-
demiologic and clinical settings.
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Hyperhomocysteinemia and venous thromboem-
bolic disease

Although venous thromboembolism accounts for
50% of the vascular complications of homocystin-
uria,75 the potential for involvment of less severe
HHcy in the pathogenesis of venous thromboem-
bolic disease had been overlooked until recently.
The expression of inherited biochemical abnormali-
ties predisposing to venous thromboembolic con-
sists of recurrent thrombosis, thrombosis at a
young age, idiopathic thrombosis, thrombosis after
trivial provocation, and thrombosis in an unusual
site.76 Brattstrom et al.77 found a higher prevalence
of HHcy after a methionine load (14%) – but not of
fasting HHcy – in a series of patients under 50 years
of age with venous thromboembolism than in sex-
and age-matched controls. Increased fasting homo-
cysteine levels were reported in another study in
25% of patients who developed venous thrombosis
before 60 years of age.78 Fasting and post-methion-
ine load homocysteine levels were measured by
Falcon et al.79 in a series of 80 patients who had
had at least one verified episode of venous throm-
boembolism before the age of 40 years and who
were free from hemostatic abnormalities known to
be associated with increased risk of venous throm-
boembolism. Fasting HHcy was observed in 8.8%
of patients, but post-methionine load HHcy was
present in 17.7% of them. About half of the
patients with HHcy had a positive family history of
thrombosis and familial HHcy was confirmed in
over 50% of the families studied. In a cross-section-
al 2-year evaluation of 157 consecutive unrelated
patients with a history of venous or arterial occlu-
sive disease occurring before the age of 45 years or
at unusual sites, moderate HHcy was detected in
13.1% and 19.2% of patients with venous or arterial
occlusive disease, respectively.80 The prevalence of
HHcy was almost twice as high when based on
homocysteine measurements made after oral
methionine load as when based on fasting levels.
Deficiencies of protein C, protein S, plasminogen
and activated protein C resistance were detected
only in patients with venous occlusive disease, with
an overall prevalence of 18.7%. Familial HHcy was
demonstrated in 8 of the 12 families investigated.
Event-free survival analysis showed that the relative
risk in patients with moderate HHcy and the other
defects was 1.7 times greater than in patients with-
out defects and that the risk conferred by HHcy
was similar to that of defects affecting the protein
C system. A higher rate of recurrent thrombosis was
also observed in patients with HHcy and with the
other defects than in patients without defects.80

Homocysteine levels above the 90th percentile of the
control distribution were observed in another study
in 25% of 185 patients with recurrent venous
thrombosis, with a relative risk of recurrence 2
times greater in patients with HHcy than in those

without it.81 In this study, the relative risk of
patients with post-methionine load homocysteine
concentrations exceeding the 90th percentile (2.6)
was similar to that of patients with fasting HHcy.
Twenty-seven of the 46 patients with fasting HHcy
also had post-load HHcy, whereas 17 patients had
isolated methionine intolerance. Hence the overall
prevalence of HHcy in this patient population was
34.1%. However, since absolute post-methionine
load values (instead of the post-methionine load
changes from baseline levels, 65) were considered
in this study, the relative contribution of remethyla-
tion or transsulfuration defects to the risk conferred
by HHcy cannot be extrapolated.82

These data represent very strong evidence sup-
porting the role of moderate HHcy in the develop-
ment of premature and/or recurrent venous throm-
boembolic disease. High plasma homocysteine lev-
els are also a risk factor for deep vein thrombosis in
the general population. Fasting homocysteine con-
centrations were measured in 269 patients under
70 years of age with a first episode of deep-vein
thrombosis and matched control subjects partici-
pating in the Leiden Thrombophilia Study.83 HHcy
exceeding the 95th percentile of the control group
was found in 10% of the patients, with a matched
odds ratio of 2.5. The effect of HHcy was indepen-
dent of other well-established risk factors for
thrombosis, including protein C, protein S and
antithrombin III deficiencies and activated protein
C resistance. An unexpected finding of this study
was the observation that the association between
elevated homocysteine levels and venous thrombo-
sis was stronger among women than among men.
Unlike the above mentioned studies on patients
with venous thromboembolism which excluded
from the analysis subjects with reduced folate and
vitamin B12 levels, nutrient levels were not measured
in this study. Thus, it cannot be ruled out that the
stronger association observed in women may
depend on a different micronutrient status. In addi-
tion, post-methionine load homocysteine measure-
ments were not carried out, resulting in a potential
underestimation of the risk conferred by HHcy. 

Similar to deficiencies of the protein C anticoagu-
lant system, not all patients with HHcy develop
thrombosis. The possibility that contributory fac-
tors in addition to HHcy may be required for the
development of thrombotic manifestations was
explored in 45 members of seven unrelated consan-
guineous kindreds in which at least one member
was homozygous for homocystinuria.84 Thrombosis
occurred before the age of 8 years in 6 of 11
patients with homocystinuria; all six patients also
showed activated protein C resistance. Conversely,
of four patients with homocystinuria who did not
have activated protein C resistance, none experi-
enced thrombosis before the age of 17 years. The
authors concluded for a substantially increased risk
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of thrombosis in patients with both homocystinuria
and activated protein C resistance.84 This conclu-
sion may cast doubts about an independent patho-
genic role for HHcy in venous thromboembolism.
Both activated protein C resistance and HHcy are
highly prevalent in patients with early onset vascu-
lar occlusive disease.80 If the association of APC-
resistance and moderate HHcy markedly increased
the thrombotic risk, one would except its preva-
lence to be significantly higher than what is associ-
ated with the prevalence of the isolated defects. In
a series of 307 patients with early-onset venous or
arterial disease or with thrombosis occurring at
unusual sites, the prevalence of isolated APC-resis-
tance and moderate HHcy (fasting or post-methio-
nine load) were 10% and 27%, respectively. The
combined defect was detected in 3.6% of patients,
a figure slightly, but not significantly higher than
the 2.7% prevalence expected assuming no effect of
the association on the risk of thrombosis.8 5

Notwithstanding the fact that identification of a
laboratory abnormality of thrombophilia should
obviously not prevent a search for other hereditary
thrombotic disorders, it should be concluded that
isolated moderate HHcy is an independent risk fac-
tor for both venous and arterial thromboembolic
disease.

Thrombogenic mechanisms of hyperhomocys-
teinemia

A number of arguments directly implicate circu-
lating homocysteine levels as an etiologic factor for
thrombosis. Some evidence stems from deficiencies
of folate, vitamin B12 and B6, which cause an
increase in homocysteine levels. Inflammatory
bowel diseases, which lead to folate malabsorp-
tion, are known to be associated with an abnormal
incidence of thrombotic disese. Folate deficiency is
also present in myeloproloferative disorders, which
predispose to both arterial and venous thrombotic
episodes. Additional hints are provided by drugs
which affect vitamin absorption and/or metabo-
lism and which are associated with both HHcy and
an increased incidence of thrombotic episodes.
Methotrexate is a folate antagonist. It has been
proposed that the increased incidence of throm-
boembolism seen in patients receiving methotrexate
may be related to the observed elevation in plasma
homocysteine levels.86 There is evidence that long-
term use of oral contraceptives is associated with
folate deficiency.87 Estrogen-containing contracep-
tives also affect pyridoxine metabolism and may
influence homocysteine levels through the transsul-
furation mechanism.88 Azauridine, a drug used in
the treatment of psoriasis, inhibits CBS activity,89

giving rise to HHcy; the use of this drug has also
been associated with vascular occlusive complica-
tions. The absence of a strong association between

nutrient deficiencies of folate, vitamin B12 and B6

and thromboembolic complications is most proba-
bly linked to the issue of disease duration.12 In sub-
jects with genetic abnormalities of methionine
metabolism, normal or mildly reduced nutrient lev-
els may give rise to long-lasting HHcy of variable
severity. Conversely, for severe vitamin deficiencies
in the absence of inherited defects of the methion-
ine metabolic pathway, by the time homocysteine
levels rise to the range of moderate to severe HHcy,
the other clinical features associated with the defi-
ciency state lead the patient to seek medical atten-
tion, with correction of the underlying nutrient defi-
ciency. However, 56 of 115 patients with pernicious
anemia died of cerebrovascular accidents, cardiac
failure and coronary thrombosis.90 Mild to moder-
ate HHcy occurs in patients with chronic renal dis-
ease,13,91-93 particularly in patients on chronic
hemodialysis and in spite of vitamin supplementa-
tion.93 HHcy may be a contributory factor to the
high prevalence of vascular disease in patients with
chronic renal insufficiency.94 On the other hand, a
remarkable absence of atherosclerosis and throm-
boembolic disease has been observed in patients
with trisomy 21 (Down’s syndrome), who have
approximately 150% normal CBS activity.95 The pro-
tective effect of CBS gene dosage has been reported
in 3 of 4 reported studies.96-99

A number of investigators have tried to elucidate
the thrombogenic mechanism(s) of HHcy. Early
animal studies suggested a toxic effect of HHcy on
endothelial cells, resulting in shortened platelet sur-
vival,72,100 but these data have not received confir-
mation.101,102

In vitro studies of cultured endothelial cells also
showed a toxic effect of homocysteine on cell viability
and function, but these studies were conducted using
extremely high homocysteine concentrations (1-10
mmol), exceeding the levels encountered even under
the most severe pathological conditions.100,103-105 Non-
specific inhibition of prostacyclin synthesis106 and
activation of factor V107 by high concentrations of
homocysteine on cultured endothelial cells has been
reported. Inhibition of protein C activation108 and
downregulation of thrombomodulin expression109 at
homocysteine concentrations > 5 mmol/L have also
been observed. One to five mmol homocysteine
specifically block t-PA, but not plasminogen binding
to endothelial cells.110 The toxic effect of high homo-
cysteine concentrations on endothelial cells111 also
results in increased platelet adhesion106 because of
impaired regulation of endothelium-derived relaxing
factor and related nitrogen oxides,112 induction of
tissue factor,113 suppression of heparan sulfate
expression,114 and stimulation of smooth muscle cell
proliferation.115 HHcy induces oxidation of low-den-
sity lipoprotein in vitro.116 Since homocysteine can
participate in disulfide bond exchange reactions, it
is possible that excessive homocysteine entering the
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circulation can alter plasma proteins by this
process. It has been reported that homocysteine
concentrations as low as 8 mmol/L dramatically
increased the affinity of Lp(a) for plasmin-modified
fibrin surfaces, thus inhibiting plasminogen activa-
tion.117

It is generally held that different mechanisms are
responsible for arterial and venous thromboembol-
ic diseases, involving platelet function abnormali-
ties in arterial thrombosis and abnormalities of
coagulation and/or fibrinolysis in venous throm-
boembolism. Ex vivo studies looking for such abnor-
malities in patients with HHcy have yielded incon-
clusive results.101,102,118-123 In subjects with severe
HHcy due to a homozygous CBS deficiency, abnor-
mally high in vivo biosynthesis of thromboxane A2 –
as reflected by urinary excretion of its major meta-
bolite 11-dehydro-thromboxane B2 – has been
observed.124 Administration of aspirin inhibited
thromboxane production with return to baseline
high levels with a time course consistent with
platelet survival, suggesting platelets were a major
source of increased thromboxane urinary excre-
tion.124 Because thrombin is a potent inducer of
platelet activation, the presence of a hypercoagula-
ble state was investigated in homocystinuric
patients.125 Increased circulating levels of prothrom-
bin fragment 1.2, thrombin-antithrombin complex
and activated protein C were observed in homo-
cystinuric subjects essentially free of vascular dis-
ease. Interestingly, protein C levels, which were
reduced to a greater extent than factor VII and fac-
tor II levels, were significantly correlated with the
degree of HHcy.125 Diet-responsive deficiency of fac-
tor VII was previously reported in CBS-deficient
patients.122,123,126 Reduced protein C levels may con-
tribute at least in part to the venous thrombotic
manifestations of patients with homozygous CBS
deficiency. These observations may have an impact
on the treatment of HHcy because increased uri-
nary thromboxane excretion was independent of
homocysteine levels and was present both in vita-
min B6 responsive and non-responsive patients.125 It
is noteworthy that although the effectiveness of vit-
amin B6 in preventing thromboembolism in pyri-
doxine-responsive patients was shown to be highly
statistically significant, the occurrence of throm-
boembolism was not abolished by vitamin supple-
mentation.75

Conclusions
Folic acid fortification of food has been proposed

as a major tool for reducing coronary artery disease
mortality in the United States.127 Vitamin supple-
mentation may also reduce the recurrence of
venous thromboembolic disease in patients with
HHcy. At the present time, however, the clinical
efficacy of this approach has not been tested. In

addition, the bulk of evidence indicates that fasting
total homocysteine determinations can identify up
to 50% of the total population of hyperhomocys-
teinemic subjects. Patients with isolated methion-
ine intolerance may benefit from vitamin B6 supple-
mentation. Homocysteine-lowering vascular disease
prevention trials are urgently needed. These con-
trolled studies should not, however, focus exclusive-
ly on fasting homocysteine determinations and folic
acid monotherapy.
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