
miR-101 suppresses the development of 
MLL-rearranged acute myeloid leukemia

Dysregulation of miRNA (a class of short non-coding
RNA) has been observed in solid tumors and leukemia,1,2

and the role of miRNA in cancer development is largely
context-dependent.2 While several miRNA (e.g. miR-
29b)3 have been functionally linked to acute myeloid
leukemia (AML), their antitumor effects in vivo are not
evident, possibly due to the complexity and diversity of
miRNA-mediated gene regulation. It remains unclear
how miRNA contribute to an aggressive phenotype in
heterogenous AML. Using an integrated miRNA and
mRNA expression analysis, here we uncover a miRNA-
regulatory network composed of eight miRNA (i.e. miR-
29a/b, miR-101, miR-222, miR-26b, miR-27b, miR-140
and miR-155) whose downregulation is associated with
leukemia aggressiveness. We also define a tumor sup-
pressive role for miR-101 in the development of mixed-
lineage leukemia (MLL)-rearranged AML. Restoration of
miR-101 expression significantly impedes leukemia initi-
ation and progression through induction of cell cycle
inhibitors and inhibition of genes associated with self-
renewal and pro-survival in leukemic stem cells (LSC).   

Oncogenic rearrangement of the MLL gene in
hematopoietic stem/progenitor cells (HSPC) induces
aberrant gene expression and confers a poor clinical prog-
nosis in acute leukemias. Transformation by MLL fusion
proteins is primarily mediated through direct upregula-
tion of the HOXA-cluster genes and HOX co-factors such
as MEIS1.4 HOXA9 and MEIS1 are the most essential
downstream effectors of MLL fusion proteins, and we
have previously reported that their co-expression is suffi-
cient to predispose HSPC to malignant transformation
and induce AML.5 Aberrant overexpression of HOXA9
and MEIS1 is required for the induction and maintenance
of MLL-rearranged AML, where LSC have been function-
ally defined.4,5 

We and others have shown that MLL fusion proteins
(e.g., MLL-AF9) can serve as an initiating event for onco-
genic conversion of normal HSPC into pre-LSC, which
subsequently acquire additional events upon transplanta-
tion into mice for the development of LSC.4-7 The self-
renewal rate in a pre-leukemic clone determines subse-
quent tumorigenic potential in vivo. We have previously
demonstrated that pre-LSC transformed from normal
HSPC by MLL-AF9 have higher self-renewal potential
and produce a more aggressive leukemia in mice with
shorter latency than pre-LSC transformed by
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Figure 1. Overexpression of miR-101
impairs the function of MLL-AF9 pre-
leukemic stem cells (pre-LSC). (A)
Integrated genomic analysis identify-
ing a tumor suppressor miRNA-regu-
latory network in MLL-AF9 pre-LSC
compared to HOXA9/MEIS1 pre-LSC.
Diamond shape: miRNA identified by
Exiqon miRCURY LNA microRNA array.
Circle: mRNA (targeted by miRNA)
identified by Illumina expression
array. (B) Serial colony replating assay
of miRNA-expressing MLL-AF9 pre-
LSC. The number of colonies per dish
at the 6th round of replating is shown
(n=3). (C) Heat map of microarray
analysis showing differential gene
expression in MLL-AF9 pre-LSC over-
expressing miR-101 versus empty
vector (EV) control (n=3) with a cut-off
of the false discovery rate (FDR)
≤0.05 and fold change (FC) ≥1.5. (D)
Western blot analysis confirming miR-
101-induced downregulation of
Meis1 and c-Fos expression in MLL-
AF9 pre-LSC. (E) Percentage of apop-
totic cells (n=3) in MLL-AF9 pre-LSC
and western blot analysis showing
reduced expression of Mcl-1 and Bcl-
2 by miR-101 overexpression. (F) Cell
cycle analysis of miR-101-expressing
MLL-AF9 pre-LSC using Ki-67 and
7AAD staining (n=3 independent
experiments) and western blot analy-
sis revealing miR-10-induced upregu-
lation of p21 and p27 expression.
*P<0.05; **P<0.01; NS: not signifi-
cant (P>0.05). 
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HOXA9/MEIS1.5,7 Despite major differences in self-
renewal and mouse survival, pre-LSC mediated by MLL-
AF9 and HOXA9/MEIS1 display similar immunopheno-
type and induce AML with similar histopathologic mani-
festations.5,7 Thus, genes differentially expressed in MLL-
AF9 versus HOXA9/MEIS1 pre-LSC may contribute to the
highly aggressive phenotype in MLL-AF9-induced AML. 

To identify miRNAs that regulate the differential gene
expression, we performed an integrated analysis for
miRNA and mRNA expression profiling using the
Bayesian Network with Splitting-Averaging strategy,8

and identified a tumor suppressive miRNA-regulatory
network in HSPC-derived MLL-AF9 versus
HOXA9/MEIS1 pre-LSC4,7 (Figure 1A and Online
Supplementary Figure S1A-D). Of the eight miRNA identi-
fied, miR-101, miR-29b, miR-222 and miR-155 are

reportedly down-regulated in newly-diagnosed AML
patient samples compared to normal human CD34+

HSPC, while miR-29a and miR-29b are down-regulated
in patients with MLL-rearranged AML compared to other
AML subtypes displaying a subtype-specific feature.9

These observations are consistent with our result show-
ing lower levels of these miRNA in LSC (L-GMP,
Lin−CD127−c-Kit+Sca1−GFP+CD16/32highCD34+)4 flow-
sorted from mice with MLL-AF9-induced AML than in
normal murine HSPC (Online Supplementary Figure S1E),
supporting a potential tumor suppressor role for the
miRNA-regulatory network in MLL-rearranged AML.  

Among the eight miRNA, miR-29b has been function-
ally defined as a tumor suppressor and its overexpression
reduced tumorigenicity in a BCR-ABL-expressed K562
xenograft mouse model of human chronic myeloid
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Figure 2. miR-101 suppresses the development of leukemic stem cells (LSC) in a mouse model of MLL-AF9-driven acute myeloid leukemia (AML). (A) Kaplan-
Meier survival curves of mice receiving miR-101-expressing MLL-AF9 pre-LSC. 1x106 pre-LSC were transplanted into sublethally irradiated (6 Gy) BL6 recipient
mice for the development of primary AML. P-values were determined by the log-rank test. (B) Percentages of GFP-positive (+) leukemic cells in the bone marrow
(BM) of mice with primary AML. (C) Colony forming assay of MLL-AF9 LSC from primary AML. (D) Real-time quantitative polymerase chain reaction analysis of
Tcf7l2 and c-Fos gene expression, cell cycle analysis and expression of p21, p27, and Gadd45a proteins in primary MLL-AF9 LSC. (E) Kaplan-Meier survival
curves of mice receiving GFP+ MLL-AF9 leukemic cells isolated from primary AML and confocal immunofluorescence showing miR-101-induced reduction of
nuclear active β-catenin in leukemic cells from secondary AML. *P<0.05; ***P<0.0005; ****P<0.0001; NS: not significant (P>0.05).   
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leukemia (CML) by targeting apoptosis, cell cycle and
proliferation pathways.3 While miR-101 is reported as a
putative tumor suppressor in several types of cancer via
targeting diverse oncogenic pathways,10 its role in AML
has not yet been explored. To further evaluate the
miRNA-regulatory network, we investigated the tumor
suppressive function of miR-101, which was one of the
most down-regulated miRNA identified, in MLL-AF9-
induced AML. We used miR-150 as a control because,
despite not being in the network, its expression is down-
regulated in both AML and CML.11

HSPC-derived MLL-AF9 pre-LSC were transduced
with a retroviral vector expressing miR-101, miR-29b or
miR-150. Ectopic expression of these miRNA reduced the
ability of pre-LSC to form colonies in serial replating
assays (Figure 1B and Online Supplementary Figure S2A and
B). Notably, miR-101 induced a significantly stronger
growth-inhibitory effect on MLL-AF9 pre-LSC than miR-
29b and miR-150, which was correlated with miR-101-
mediated upregulation of cell-cycle inhibitor p21/Cdkn1a
and downregulation of key Wnt/self-renewal target
genes, including Meis1, c-Fos, Mef2c, Bcl11a, CD52, Gpx3
and Ly6e identified by microarray analysis (Figure 1C).
Subsequent RT-PCR and western blot analyses confirmed
increased expression of p21 and reduced levels of Meis1,
Bcl11a, c-Fos and Tcf7l2, which are known self-renewal
genes in MLL-AF9-induced AML4,5,7 (Figure 1D and Online
Supplementary Figure S2C). We and others have previous-
ly demonstrated that Wnt/β-catenin signaling is required
for the development of LSC in AML.5 Tcf7l2 and c-Fos are
two key β-catenin transcriptional cofactors driving tran-
scription of Wnt/β-catenin target genes likely contribut-
ing to LSC self-renewal.7 Furthermore, the phenotypic
defect in pre-LSC was accompanied by decreased cell

proliferation in methylcellulose and induced apoptotic
cell death through suppression of pro-survival proteins
Mcl-1 and Bcl-2, as well as G1 cell cycle arrest through
elevation of cell-cycle inhibitors p21 and p27 (Figure 1E
and F and Online Supplementary Figure S2D). These find-
ings suggest that restoring expression of miR-101 impairs
pre-LSC functions through regulation of genes associated
with Wnt/self-renewal, pro-survival and cell cycle path-
ways.   

We next assessed the inhibitory effect of miR-101 over-
expression on AML development by intravenously trans-
planting miR-101-expressing MLL-AF9 pre-LSC into sub-
lethally irradiated syngeneic recipient mice. Our data
showed that enforced expression of miR-101 reduced the
incidence and delayed the onset and progression of AML
in mice, which was accompanied by a significant
decrease in leukemic cell infiltration in bone marrow
(BM) (Figure 2A and B). miR-101-expressing MLL-AF9
LSC flow-sorted from primary AML revealed reduced
colony-forming capacity (Figure 2C and Online
Supplementary Figure S3). This was likely caused by miR-
101-induced suppression of Wnt target genes (Tcf7l2 and
c-Fos), and cell cycle arrest at the G1 phase via upregula-
tion of p21, p27 and Gadd45a (Figure 2D). As a conse-
quence of compromised LSC, miR-101-expressing AML
cells from primary recipients generated a less aggressive
leukemia in secondary recipient mice, whose BM cells
exhibited a marked decrease in nuclear active β-catenin
(Figure 2E). Altogether, these data underscore a tumor
suppressor role for miR-101, whose ectopic expression
impairs LSC development and reduces AML aggressive-
ness in mice.

We then investigated the effect of miR-101 overexpres-
sion on tumor burden in a mouse xenograft model of
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Figure 3. miR-101 reduces tumor burden in human MLL-AF9 (MOLM-13) xenografts. (A) Confocal immunofluorescence confirming miR-101-induced decrease
of nuclear active β-catenin in human MLL-AF9 (MOLM-13) acute myeloid leukemia (AML) cells. (B) Bioluminescence imaging and total flux (photons/sec; p/s) of
MOLM-13 xenograft mice (n=4). (C) Percentage of hCD45+ cells engrafted in the bone marrow (BM) of MOLM-13 xenograft mice. (D) Western blot analysis show-
ing miR-101-induced reduction in p-c-FOSSer32 and c-FOS levels. (E) Real time-quantitative polymerase chain reaction analysis of miRNA expression in miR-101-
expressing human MLL-AF9 AML cells isolated from the BM of MOLM-13 xenograft mice. **P<0.01; ***P<0.0005; ****P<0.0001; NS: not significant
(P>0.05).     
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human MLL-AF9 (MOLM-13) AML, which has an
extremely short latency (14 days) and is an effective
xenotransplantation model for in vivo functional studies.
Consistent with our observation in murine MLL-AF9
leukemic cells, stable overexpression of miR-101 sub-
stantially decreased nuclear active β-catenin in MOLM-
13 cells (Figure 3A and Online Supplementary Figure S4A).
In vivo bioluminescence imaging showed that miR-101
overexpression reduced engraftment of human MOLM-
13 leukemic cells in NOD/SCID/IL2R gamma-null (NSG)
mice without affecting bone marrow homing (Figure 3B
and C and Online Supplementary Figure S4B). 

In agreement with miR-101-induced inhibition of
leukemia cell proliferation in vivo, miR-101 markedly
decreased the expression and phosphorylation of c-FOS
(Figure 3D), a known β-catenin transcriptional co-factor
implicated in the regulation of cell growth, survival,
apoptosis, transformation and oncogenesis.12

Phosphorylation of c-FOS is essential for its protein sta-
bilization and maximal transactivation contributing to its
increased cell-transforming activity.13 c-FOS is reportedly
a direct target of several miRNA, including miR-101,
miR-29 and miR-222.14 Our data confirmed a miR-101-
mediated reduction in luciferase activity from the con-
struct containing the c-FOS 3’-UTR (Online Supplementary
Figure S4C). Enforced expression of exogenous c-FOS
prevented miR-101-induced inhibition of leukemic cell
viability (Online Supplementary Figure S4D and E). This
result supports the role for c-FOS as a functional down-
stream target of miR-101. 

Notably, restoration of miR-101 up-regulated the
miRNA co-expression network, including miR-26b, miR-
27b, miR-29a, miR-140 and miR-222, but did not alter the
expression of miR-150 (Figure 3E). miR-101 is reportedly
a direct regulator of histone methyltransferase EZH2 and
likely regulates the miRNA network through modulation
of EZH2-mediated H3K27me3. EZH2 augments MLL-
AF9-initiated leukemogenesis by enhancing a myeloid dif-
ferentiation block in AML.15 Our data showed that over-
expression of miR-101 reduced levels of EZH2 and
H3K27me3 in murine MLL-AF9 pre-LSC and human
MLL-AF9 (MOLM-13) AML cells (Online Supplementary
Figure S5A). Selective inhibition of EZH2 by EZH2
inhibitor EPZ-6438 caused a marked increase in miR-26b,
miR-27b, miR-29b and miR-140 without affecting miR-
150 (Online Supplementary Figure S5B), underlining epige-
netic regulation of the miRNA network. Interestingly, we
also observed EZH2 inhibitor-induced elevation of miR-
101 (Online Supplementary Figure S5B). It is likely that
there is a mutual regulation between miR-101 and EZH2-
mediated H3K27me3. Increased miR-101 suppresses
H3K27me3 by directly targeting EZH2; conversely,
reduced H3K27me3 restores expression of the miRNA
network including miR-101. These findings collectively
suggest that miR-101 exerts its gene regulatory function
in leukemogenesis, at least in part, by activating and 
co-operating with the network components. This 
co-operation between the miRNA allows for the simulta-
neous targeting of multiple oncogenic pathways that
maximizes the tumor suppressive effect of miR-101.  

In conclusion, we report here a miRNA-regulatory net-
work associated with disease aggressiveness and demon-
strate a tumor suppressor role for miR-101 in MLL-
rearranged AML. Enforced expression of miR-101 impairs
LSC self-renewal and restrains leukemia development in
mice. Together with prior findings showing a tumor sup-
pressor role for miR-29b in leukemia,3 our data support

the value of the miRNA co-expression network as poten-
tial novel targets for miRNA-based therapies in AML.  
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