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CD10, originally known to immunohematolo-
gists as cALLA (common acute lymphoblas-
tic leukemia antigen), was one of the first

markers available for identifying leukemic cells in
children with acute lymphoblastic leukemias.1

CD10 appeared at a time when immunophenotyp-
ing consisted merely of E-rosetting and surface
immunoglobulin identification, which caused
much frustration since mostly undifferentiated cells
were observed. 

Parallel to the studies of CD10 expression on
leukemias, which are reviewed in the second part
of this paper, extensive work was performed explor-
ing an enzyme with peptidase activity, that was
later identified as identical to CD10.2

CD10: the molecule and its functions
The neutral endopeptidase NEP, or KII-NA, is

coded by a gene located on chromosome 3.
Cloning of this gene revealed it was identical to
CD10.3,4 It also allowed the production of trans-
fected COS cells that were able to display surface
enzymatic activity.5 CD10 is also known as enke-
phalinase and, more recently, acquired the official
name of Neprilysin or EC 3.4.24.11.6 It is a 90-100
Kd transmembrane type II molecule (with an intra-

cytoplasmic N-terminus and an extracellular C-ter-
minus) expressed as a single chain of 795 amino
acids (Figure 1).2,7 The intracytoplasmic tail con-
sists of only 24 amino acids. Among the 700
amino acids of the extracellular portion, there are
12 cystein residues, which suggests that numerous
intra-chain disulphide bonds may exist. There also
are numerous potential glycosylation sites, and the
position of at least 3 zinc-binding sequences has
been identified. CD10 is indeed a metallo-pepti-
dase, requiring Zn cations to be efficient. The enzy-
matic activity is located in a 5-amino-acid portion
(His-Glu-[Ile,Leu,Met]-Xaa-His) similar to that
found on other exopeptidases. Indeed CD10
belongs to a family of at least 3 other exoenzymes:
aminopeptidases A and N, and dipeptidylpepti-
dase IV.2,7 Amazingly, aminopeptidase N is also
known as CD13 and dipeptidylpeptidase IV as
CD26. It might not be fortuitous that CD10, CD13
and CD26 are present on activated mature cells of
the three major lineages: respectively, B cells,
myeloid cells and T cells. Carboxypeptidase M and
angiotensin conversion enzyme also belong to this
large family of exopeptidases.

CD10 is specialized in the cleavage of 1-3 N-ter-
minal amino acids from peptides, preferably cleav-
ing neutral amino acids such as valine, iso-leucine,
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phenylalanine, leucine or alanine.2 Many physiolog-
ical activities of CD10 can be deduced from the list
of its known substrates reported in Table 1.2,7-10

Since the major expression sites of this molecule are
the brush border of enterocytes and renal tubules
and glomeruli (Figure 2), it is likely that CD10 is
actively involved, respectively, in the degradation of
small food-derived peptides and of renal media-
tors. CD10 also plays an important part in the
maturation of the lung through the cleavage of
bombesin-like peptides.11 In the brain, it was initial-
ly described as enkephalinase since it is able to
inactivate the opioid peptides met- and leu-
enkephalins.2,7 On circulating cells, CD10 is actively
involved in the regulation of chemotactic and
inflammatory processes involving neutrophils. The
association of CD10 and CD13 on the surface of
polymorphonuclears allows them to hydrolyze and
inactivate such chemotactic peptides as fMet-Leu-
Phe.2 Soluble CD10 could be involved in the regula-
tion of the kininogen-kinin system, since KII-NEP is
also a kininase that is able to inactivate both
kallidin and bradikinin within 30 seconds of their
release from kininogen.12

In the hematopoietic system, CD10 regulates
stromal cell-dependent B lymphopoiesis, either by
inactivating B-stimulating peptides or by activating

inhibitory propeptides (Figure 3), although these
specific substrates have not yet been identified.2,13

Furthermore, this activity seems to be specific for
the human hematopoietic system because similar
observations could not be made in some mouse
models,14 although other authors15 have reported
CD10/NAP expression on mouse Thy-1+ progeni-
tors. Indeed CD10 expression, which could be
involved in early B-cell proliferation,16 also seems to
be increased on thymocytes, perhaps through con-
tact with thymic epithelial cells, and might be
involved in T-cell differentiation and maturation as
well.17 It has clearly been demonstrated to be able
to increase T cell IL-2 production.18 As for CD13
and CD26, which are found on functionally mature
cells,2 CD10 expression is not limited to early B (or
T) cells. Indeed CD10 re-expression has been
reported on physiologically mature B cells in germi-
nal centers19 as well as on myeloma and lymphoma
cells.20-22 Therefore CD10, like other exopeptidases,
seems to be involved in late stage regulation of
hematopoietic cells. 

CD10 and acute leukemias

B-lineage ALL
As mentioned above, CD10, which was originally

known as cALLA, was initially investigated using the
polyclonal antiserum produced by Melvin Greaves
in rabbits. Monoclonal antibodies were soon devel-
oped and cALLA acquired a CD number at the first
workshop on leukocyte differentiation antigens.23

Not all CD10 antibodies are similar;24 about 18 dif-
ferent clones are currently commercially available,
and they may yield different results both on
leukemic and non leukemic cells. That CD10 was
not the ALL antigen was gradually discovered, even
before the identicalness between CD10 and the
neutral endopeptidase was evidenced. CD10 was
discovered to be physiologically present on a small
subset of maturing B cells in human bone marrow,
and is in fact transiently expressed during B-cell dif-
ferentiation.25 This is consistent with the possible
roles of CD10 in the regulation of differentiation
and maturation of peptides or propeptides. This is
not true however in murine models.

In B-lineage leukemias, CD10 expression is
involved  in  the  definition of EGIL B-I versus B-II
stages: it is must be absent from B-I blasts and pre-
sent on B-II blasts.26 Analysis of large series of
leukemias, as in the GEIL, shows that the percent-
age of CD10-positive cases decreases in more
mature forms of B-lineage ALL (Figure 4).27 This
was also reported on normal lymphocytes during
their maturation.2 5 CD10 is supposed to be
expressed during the first stages of heavy chain
gene rearrangement and can be co-expressed with
surface µ-VpreB or µ-l 5 pre-BCR.7

A quantitative analysis of CD10 expression, this
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Figure 1. The CD10
molecule (adapted
from Shipp). Dark
spots are cysteine
residues. Small hori-
zontal bars represent
Zn-binding sites. The
enzymatic active site
sequence is spelled
out.

Table 1. Reported substrates of CD10 (after Shipp & Look,2

Mari & Auberger,7 Lapadula et al.8).

Reported substrates of CD10

Substance P
Atrial natriuretic factor
Endothelin
Neurotensin
Oxytocin
Bradykinin, Kallidin
Angiotensins 1 and 2
Bombesin-like peptides
Opioid peptides met- and leu-
enkephalins

f-Met-Leu-Phe
Thymopentin
Thymic factor g2
Calcitonin gene related peptide
Cholecystokinin
Splenin
Colony stimulating factors
Gastrin
Glucagon
IL-1 (?)
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time in terms of CD10 molecules on blasts, was per-
formed within the GEIL using the QIFI-kit,28 and this
also showed decreasing CD10 cell density on more
mature blasts. Similar data have also been reported
by others.29,30

CD10-negative B-lineage ALL
CD10 expression on B-lineage leukemias defines

the largest group of ALL, whether they be classified
as B-II or a later differentiation stage. The absence
of CD10 therefore defines a peculiar subtype of ALL
that deserves special attention. The incidence of B-I
ALL is difficult to determine in the literature, owing
both to discrepancies in clinical studies and to fre-
quent reports of mixed series of patients described
without sufficient immunophenotyping criteria to
define sIg-/cµ- B-I cases among CD10– patients.31-41

Moreover, such patients usually represent small
series of individuals.

Figure 5 reports data from 4 studies and demon-
strates that the incidence of B-I ALL cases varies
from 5 to 55% among series. Pui’s pediatric report37

emphasizes a higher incidence in infants, although
a lower rate was observed in Garand’s GEIL study.
All studies agree on a rate of approximately 5% in
children between the ages of 1 and 16 years. B-I
ALL, however, also occur in adults, with a similar
incidence in French and German studies (around
15%). Specific characteristics of B-I ALL have sel-
dom been analyzed in detail. A GEIL study on 64
consecutive patients42 reported clinical features sim-
ilar to those of patients diagnosed as suffering from
B-II ALL and significantly different from T-ALL
patients, but with an outcome more comparable to
that of T-ALL in both children and adults. This con-

Figure 2.  CD10 expression on human kidney (above) and gut
(below). Initial magnification 3100. Indirect immunofluores-
cence, J5 clone (Coulterclone, Coultronics, Hialeah, FL, USA).
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Figure 3. Possible roles for CD10
in B-lineage maturation and differ-
entiation.
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firms previous reports about the poor outcome of
these patients33,43 and reinforces the importance of
properly diagnosing this subtype of ALL, which
involves not only showing the absence of CD10 but
also demonstrating the intracytoplasmic absence of
immunoglobulins. 

Other immunophenotypic peculiarities of B-I ALL
observed in the GEIL series are summarized in
Figure 6. These include a lesser expression of DR,
CD24 and CD34, and a higher incidence of vari-
ants of biphenotypic ALL, mostly because of the
aberrant expression of myeloid lineage markers.
Gene analyses show relatively frequent IgH and
sometimes Vb rearrangements, suggesting that
anomalies in the rearrangement machinery may
have stopped cell differentiation.34

Great emphasis has been given in several reports
to the relationship between a B-I ALL immunophe-
notype and chromosome 11 abnormalities, espe-
cially t(4;11). Indeed many t(4;11) or 11q23

anomalies are associated with this ALL subtype;43,44

however, a reverse analysis, i.e. the incidence of
chromosome 11 alterations within the B-I ALL sub-
type, shows a weaker association. The percentages
of B-I ALL with t(4;11) range between 30% and
50% in literature series. In the GEIL series, 25% of
B-I ALL patients available for karyotypic analysis
presented a t(4;11), and 31% of the patients had
anomalies involving chromosome 11. However, no
difference was noted in the clinical, immunopheno-
typic or evolutional characteristics of these patients
as compared to ones with a normal karyotype or
other anomalies. This suggests that it might be
more important to diagnose B-I ALL on immuno-
phenotypic criteria than on karyotypic features, and
that all B-I ALL patients could benefit from better
adapted therapeutic protocols.
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Figure 4. Decreased numbers of cases express CD10 in more
mature B-lineage ALL immunophenotypes. GEIL experience.
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Figure 5. Incidence of B-I ALL in literature series expressed as
percentage of ALL cases within age groups (black bars: infants
0-12 months old, white bars: children 1-16 years old; striped
bars: adults over 16 years old).

DR CD24 CD34 T-VAR My-VAR0

50

100

DR CD24 CD34 T-VAR My-VAR

Figure 6. Major immunophenotypic features differing between
PreB1 (B-I; black bars) and PreB2 (B-II without CD20; white
bars) ALL in the GEIL experience. Data are expressed as the per-
centages of positive cases for each marker in both types of ALL.
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Figure 7. Expression of CD10 on T-ALL leukemias in the litera-
ture. Black bars: children. White bars: adults.



CD10 in non-B lineage ALL
The expression of CD10 in other types of AL has

been described in several series.37,45,46 It does not
seem to be a rare feature in T-ALL, with similar inci-
dences of about 30% being reported in the literature
(Figure 7). This could be related to the possible
physiologic roles of CD10 in normal thymic matura-
tion and on activated T cells. Nevertheless, although
CD10 is definitely an important and well-expressed
surface molecule on polymorphonuclears, AML cells
very seldomly appear to be CD10+, with between 0
and 10% incidence given in literature series.

Conclusions
Today CD10 definitely has a different image from

that of the ALL common antigen known to hema-
tologists and immunologists. It appears as a ubiq-
uitous and functionally important exoenzyme, the
expression of which is certainly not restricted to
maturing B cells. Much however remains to be
investigated regarding the functions of CD10 dur-
ing physiological B-lineage differentiation. This
involves the identification of its peptide substrates,
as well as further investigation of its possible rela-
tionship with other enzymes physiologically associ-
ated with CD10 or its fellow exopeptidases, such as
the carboxypeptidases,47 CD38,47 CD7348 or CD26-
associated adenosine deaminase.49 All these other
compounds could be involved either in activating
or deactivating growth factors, or in providing
material and/or energy for dividing cells.

Better knowledge of these interactions could per-
haps shed some light on the still obscure mecha-
nisms of leukemogenesis. Indeed CD10 peptidase
activity might be relevant in the leukemogenic
process of B-II ALL, which remain the most fre-
quent type of ALL. 

It also appears to be important to evaluate prop-
erly the absence of CD10 on B-lineage ALL, since B-
I ALL clearly represent a subgroup with poor prog-
nosis. Finally, further developments may be expect-
ed from a quantitative approach to assessing CD10
expression on leukemic cells.
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