
Convergence of risk prediction models in follicular
lymphoma

Follicular lymphoma (FL) is a common indolent lym-
phoma in which clinical and biological heterogeneity is
increasingly recognized.1 Although median survival for
newly diagnosed FL patients may be as high as 18 years,2

a significant subset of patients is at risk of adverse out-
comes. In particular, patients experiencing disease pro-
gression within two years after rituximab-containing
induction therapy have an increased risk of premature
death, but can only be identified a posteriori.3-7 Recently,
several molecular risk stratification methods have been
reported, including the m7-Follicular Lymphoma
International Prognostic Index (m7-FLIPI) clinico-genetic
risk model,8 protein expression of FOXP1,9,10 and a predic-
tor based on the expression of 23 genes (Huet et al.,
henceforth referred to as “Gene-Expression Profiling
Score or GEP Score”).11 However, the uncertainty of
whether these novel biomarkers identify similar biology

is impeding the development of risk-adapted manage-
ment strategies.

As the field would benefit from coherent risk models,
we asked the question whether expression of FOXP1 and
the GEP Score are inter-related. Here we demonstrate
that the gene content from the GEP Score identifies
patient groups with diverging outcomes in our own,
independent dataset. We then show that expression of
FOXP1 is strongly correlated with the GEP Score, demon-
strating that they identify highly similar patient popula-
tions. Lastly, network analysis indicates gene expression
interconnectivity between both biomarkers.

With regards to the methods, we had previously gener-
ated Illumina cDNA-mediated annealing, selection,
extension and ligation (DASL) microarray expression pro-
files for 137 FL patients who had been treated with ritux-
imab in combination with chemotherapy (cyclophos-
phamide, vincristine and prednisone).8 Of these, 113
patients had received rituximab maintenance by inten-
tion to treat.8 Microarray data have been deposited at the
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Figure 1. Coefficients, scores and clusters generated based on the modified Gene-Expression Profiling (mGEP) Score reveal distinct patient outcomes. (A) Plot
showing the coefficients from Cox regression analysis from our cohort (cDNA-mediated annealing, selection, extension and ligation, DASL) and coefficients from
Huet et al.11 (Affymetrix). (B) Progression-free survival (PFS) by mGEP Score in our cohort. Five-year PFS was 54% versus 78% in patients with high and low
scores, respectively. (C) PFS by mGEP Score and m7-Follicular Lymphoma International Prognostic Index (m7-FLIPI) category in our cohort. (D) PFS by cluster in
our cohort. Five-year PFS was 54% versus 68% in patients with Cluster 2 and Cluster 1, respectively. (E) Heatmap showing the genes along rows and patients
along columns. Three genes, SHISA8, EML6 and DCAF12, from the GEP score were not included in the mGEP Score calculations. Gene names in red are asso-
ciated with poor outcome in the mGEP Score. Cluster 1 and Cluster 2 were characterized by high expression of genes associated with favorable and poor out-
come, respectively. 
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Gene Expression Omnibus (GEO) under accession num-
ber GSE119214. Gene names and coefficients from the
GEP Score were taken from Huet et al.11 who had applied
both Affymetrix and NanoString expression platforms to
samples from FL patients treated with rituximab and a
variety of chemotherapy regimens. In order to apply the
GEP Score to our own data, we calculated risk scores
(henceforth referred to as “modified Gene-Expression
Profiling Score or mGEP Score”) from our DASL expres-
sion data using the weighted sum of quantile normalized
gene expression levels for each patient. We used the coef-
ficients described in Huet et al.11 for the Affymetrix plat-
form. A binary score was defined by thresholding the
scores at the value resulting in maximal value of the log-
rank statistic. To account for multiple cut-point testing,

P-values were adjusted using the method proposed by
Miller and Siegmund,12 implemented in X-tile.13 To iden-
tify underlying subgroups in our data, we performed
unsupervised, hierarchical clustering. The t-test was used
to identify associations between gene expression scores
and EZH2 mutation status, FOXP1 expression, and m7-
FLIPI. Low and high expression of FOXP1 were defined
as ≤10% and >10% of cells staining positive, as previous-
ly described.9 Differential gene expression analysis by
FOXP1 expression was performed using limma.14 Gene
set enrichment analysis was used to identify over-repre-
sentation of relevant gene signatures.15 Gene co-expres-
sion similarities were determined and connections were
calculated from standardized expressions scaled to zero
mean and unit variance.
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Figure 2. Convergence of outcome prediction tools in follicular lymphoma (FL). (A, B and C) The mean modified Gene-Expression Profiling (mGEP) Score was
significantly higher in cases who had high FOXP1 expression, were EZH2 mutation wild-type and were classified as high-risk m7-Follicular Lymphoma
International Prognostic Index (m7-FLIPI) category. (D) Volcano plot, with genes from the mGEP score highlighted by labeling. Positive log fold-change (logFC)
indicates higher expression in cases with high FOXP1 expression, and vice versa. The horizontal, dashed, green line indicates -log10(adjusted P=0.05) and the
dashed, purple line indicates -log10(adjusted P=0.01). Adjusted P-values were calculated using the Benjamini and Hochberg method. (E and F) Gene set enrich-
ment analysis (GSEA) shows that genes with positive coefficients from the mGEP Score and genes with a positive weight in the ICA13 signature were significantly
enriched in cases with high FOXP1 expression. (G and H) GSEA shows that genes with negative coefficients from the mGEP score and genes with a negative
weight in the ICA13 signature were significantly enriched in cases with low FOXP1 expression. (I) Gene connections based on related expression.
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Twenty genes from the GEP Score (87%) were found
to be present in our dataset. All downstream analyses
were performed using these 20 genes. We correlated the
expression of each of these 20 genes with progresion-
free survival (PFS) using univariate Cox regression analy-
sis and showed that the coefficients from Cox regression
were significantly correlated with the coefficients report-
ed by Huet et al.11 (Pearson r = 0.7; P<0.001) (Figure 1A).
All genes that had previously been found to portend
poor-risk were also associated with poor PFS in our data,
and vice versa. Having information on only 20 genes out
of the 23, we calculated an mGEP Score, that was found
to be significantly associated (as a continuous variable)
with PFS in univariate Cox regression analysis (P=0.002).
Using the maximally selected log-rank statistic, we
defined an optimal cut-off to dichotomize the distribu-
tion of the mGEP Score. We defined a cut-off of 1.14,
and using this we identified 92 (67%) cases with a high-
risk score who had inferior PFS compared to 45 (33%)
cases with low-risk score (5-year PFS 54% vs. 78%;
P=0.002 and adjusted P=0.048) (Figure 1B). The corre-
sponding 5-year overall survival (OS) rates were 72%
and 87% (P=0.025) (Online Supplementary Figure S1A).
We then assessed the combined effect of the mGEP
Score and the m7-FLIPI and found that the mGEP Score
added prognostic value to both m7-FLIPI risk groups
(Figure 1C and Online Supplementary Figure S1B).

To be confident that the genes from the mGEP Score
identify distinct biological subgroups, we performed
unbiased hierarchical clustering. We identified two main
clusters, Cluster 1 and Cluster 2. Patients from Cluster 2
experienced worse PFS compared to patients in Cluster 1
(P=0.046; 5-year PFS 54% vs. 68%) (Figure 1D).  Cluster
1 and Cluster 2 were characterized by high expression of
genes associated with favorable and poor outcome,
respectively (Figure 1E). The 5-year OS was 72% for
patients in Cluster 2 vs. 81% in Cluster 1 (P=0.13)
(Online Supplementary Figure S1C). The association
between PFS and clusters remained significant after
adjusting for FLIPI and rituximab maintenance [Hazard
Ratio (HR) 1.86; P=0.01]. The clusters were not signifi-
cantly associated with individual FLIPI factors, with the
exception that age was slightly lower for patients
belonging to Cluster 2 (Online Supplementary Table S1).
Collectively, our results strongly suggest that the find-
ings from Huet et al.11 hold true in our independent
dataset, lending support to the robustness of their pre-
dictor.

Previously, a gene expression signature (ICA13), that is
highly correlated with the GEP Score, was found to be
expressed at high levels in centroblasts residing in the
dark zone of the germinal center.11 In parallel, we had
found that a dark zone-related gene set was enriched in
FL biopsies with high FOXP1 expression.9 These obser-
vations prompted us to test whether FOXP1 expression
is associated with expression of either the ICA13 signa-
ture and/or the mGEP Score. We found that the mean
mGEP Score was significantly higher in cases with high
expression of FOXP1 (P<0.001) (Figure 2A). The mGEP
Score as a categorical variable was also significantly
associated with FOXP1 expression using the χ2 test
(P=0.002). Interestingly, the mean mGEP Score was sig-
nificantly lower in cases with EZH2 mutation (P<0.001)
(Figure 2B) and it was also lower in cases with low m7-
FLIPI risk score (P=0.032) (Figure 2C). The latter obser-
vations are consistent with EZH2 mutation status having
a strong negative coefficient (associated with favorable
risk) in the m7-FLIPI risk model. Differential gene
expression analysis between FOXP1-high and low

expressors identified that 7 out of the 20 genes from the
mGEP Score were differentially expressed in this com-
parison (Figure 2D).

To further test whether defined signatures are associat-
ed with FOXP1 expression, we performed gene set
enrichment analysis.15 This analysis revealed that the
genes with positive coefficients in the mGEP Score, as
well as the genes with positive weight in the ICA13 sig-
nature (i.e. the genes associated with poor PFS) were
enriched in the FOXP1-high phenotype [false discovery
rate (FDR) 0.009 and 0.005, respectively] (Figure 2E and
F). Conversely, genes with negative coefficients in the
mGEP Score (i.e. the genes associated with favorable PFS)
were enriched in the FOXP1-low phenotype (FDR 0.039)
(Figure 2G); and genes with negative weight in the ICA13
signature had a negative enrichment score in the FOXP1-
low phenotype (FDR 0.062) (Figure 2H). As FOXP1 and
other transcription factors represented in the mGEP Score
likely operate in tightly regulated networks, we comput-
ed a weighted network based on gene expression corre-
lation (Figure 2I). This analysis revealed a co-expression
network (among SEMA4B, TAGAP, TCF4, USP44, VCL,
AFF3, ALDH2, CXCR4, E2F5, GADD45A and FOXP1),
with FOXP1 emerging as a central gene with one of the
highest amounts of interconnectivity (Figure 2I). Taken
together, these findings illustrate that high expression of
FOXP1 and high-risk assignment by the mGEP Score
identify similar disease biology.

In summary, we were able to not only independently
validate the prognostic relevance of the mGEP Score, but
we also observed a striking association between high
expression of FOXP1 protein by immunohistochemistry
and high expression of poor-risk gene signatures identi-
fied by Huet et al.11 Although recent studies used a vari-
ety of approaches to define prognostic models, we
demonstrate biomarker convergence on a common phe-
notype: FOXP1 expression, EZH2 wild-type status and
expression of dark zone-related genes define an FL phe-
notype with adverse outcome following front-line treat-
ment with rituximab and chemotherapy. Despite the
associations demonstrated herein, it is evident that the
various biomarkers are not perfectly concordant, as evi-
denced, for example, by the additional prognostic infor-
mation that is gained when combining the m7-FLIPI and
the mGEP Score. Nonetheless, our observations confirm
that the clinical validity of biomarkers such as the GEP
Score is now established. Future studies will need to test
whether they have predictive value and whether alterna-
tive treatment options may be better suited to offer high-
risk patients improved outlooks.
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