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Supplementary Methods 
 

Samples 

One patient (case 348) has collection of sequential samples (diagnosis, remission and relapse. We 

sequenced all his samples and used his remission sample as germline control). We unfortunately 

do not have matched germline samples for the addtional 14 patients. The sequenced ALAL 

samples were obtained from cryopreserved diagnostic bone marrow aspirate specimens. These 

samples were taken when a potential patient was referred for a bone marrow biopsy after the 

appropriate consents were given. The samples were diluted with equal samples of Hank’s balanced 

salt solution, layered onto Ficoll, centrifuged and aspirated into a sterile tube. Samples were then 

counted, washed and resuspended to obtain concentration of 10 million cells per ml. The 

speciments were then aliquoted into cryovials and gradually cooled to -80 degrees Celsius before 

being transferred into liquid nitrogen. DNA and RNA were extracted from the liquid nitrogen 

samples and used for sequencing. 

 

Exome sequencing analysis 

We used a highly stringent bioinformatics pipeline that we developed previously extensively to 

remove germline SNP (1-8). The mutation list was filtered with dbSNP131, 1,000 genome, The 

Exome Aggregation Consortium database (ExAC, http://exac.broadinstitute.org/), Esp5400 

[NHLBI Exome Sequencing Project (ESP) Exome Variant] exome database 

(http://evs.gs.washington.edu/EVS/), UCSC repeat filters and our in-house manually curated SNP 

database with the following criteria (10, 11): 

For dbSNP database: Latest versions of dbSNP database (dbSNP137, dbSNP 138 etc.) were not 

utilized as they are contaminated with some well-characterized somatic oncogenic mutations: e.g., 

NRAS G12D (rs121913237), IDH2 R140Q (rs121913502) [see below Table (10)]. For SNPs 

present in dbSNP131 but also marked with CLINSIG=pathogenic in ClinVAR database, each of 

them were manually inspected to determine whether those SNPs were associated with 

leukemia/cancer, before they were filtered from our list. 
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Presence of well appreciated somatic cancer/leukemic drivers in dbSNP and exome sequencing database of ExAC and 

Esp5400: 

 1000 

genome 

dbSN

P131 

dbSNP137 dbSNP138 dbSNP141 ExAC 

frequency 

ESP5400 

frequency 

DNMT3A R882H             NA NA rs147001633 rs147001633 rs147001633 0.0005449 0.000744 

DNMT3A R882C             NA NA NA rs377577594 rs377577594 0.0003551 0.000279 

DNMT3A S714C             NA NA NA rs367909007 rs367909007 0.00004119 0.000093 

IDH2       R140Q              NA NA rs121913502 rs121913502 rs121913502 0.00009884 NA 

IDH2       R172K                    NA NA rs121913503 rs121913503 rs121913503 NA NA 

IDH1       R132H               NA NA rs121913500 rs121913500 rs121913500 NA NA 

FLT3       D835Y                NA NA rs121913488 rs121913488 NA NA NA 

U2AF1    S34F                 NA NA NA rs371769427 rs371769427 0.00004213 0.000093 

KRAS      G12D NA NA rs121913529 rs121913529 NA 0.00001976 NA 

KRAS      G13C NA NA rs121913535 rs121913535 NA NA NA 

KRAS      G13D NA NA rs112445441 rs112445441 NA NA NA 

NRAS      Q61K NA NA rs121913254 rs121913254 NA NA NA 

NRAS      G12D NA NA rs121913237 rs121913237 NA 0.000008237 NA 
 

NA: not detected in the database. 

We filtered the mutation list with 1,000 genome, ExAC, and Esp5400 etc. Because some important 

leukemia drivers [such as DNMT3A R882H (0.0005) or IDH2 R140: DNMT3A R882 (ExAC: 

DNMT3A, Arg882His= 0.0005449; Arg882Cys=0.0003551; Arg882Pro=0.00005779; Arg882Leu 

= 0.000008256) or IDH2 R140 (Arg140Gln = 0.00009884)] were also present at very low 

frequency in the blood samples of normal elderly people (9-11) and annotated as SNP in some 

database, we manually checked and curated the list (before and after filtering) to make sure that 

those well appreciated AML drivers had not been removed. 

We used the UCSC repeat filters (genomicSuperDups, microsatellite_hits, interupted_repeats, 

repeat_masker, simple_tandem_repeats) to remove all of the SNVs site located in the repeat and 

low complexity region.   

Concerning the recent discovery that some of the early leukemia mutations (e.g., DNMT3A, IDH2 

etc.) often persisted in remission sample (1, 9-14), we also performed analysis of each sample of 

case 384 (diagnosis, remission and relapse) separately to examine whether any such mutation exist. 
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Supplementary Table 1. Summary of ALAL patients of this study. 

Case Diagnosis Age Karyotype Immunophenotype 

774 
AUL With 

t(v;11q23.3) 
17 46, XY, t(11;19)(q23;p13.3) 

MPO-, CD117+ CD33-, partial CD13+, 

partial CD11b+, CD36-, CD64-, CD14-, 

Cytoplasmic CD3- CD7+ CD2- CD5- 

CD4- CD8- CD1a- CD56- CD19- CD10- 

Tdt- CD123-.  

1542 
AUL With 

t(v;11q23.3) 
53 

44, XX, der(4)t(4;11)(p16;q23), 

add(5)(q11.2), -7, -8, 

der(11;18)t(11;18)(p11.2;p11.2) 

t(4;11)(p16;q23), add13(p13), 

del(17)(p13), -18, -21, -22 

MPO-, Partial DIM CD33+, CD13+, 

CD117+, CD11b-, CD36-, CD14-, 

CD34+, HLA-DR+, GA -, CD41-, CD61-, 

Cytoplasmic CD3-, CD4-, CD7-, CD8-, 

CD19-, CD79a-, CD10-, CD22-, CD123-, 

CD56-, Tdt-. 

1190 AUL 61 46, XX 

MPO-, CD33+, CD13+, CD117+, 

CD11b-, CD36-, CD14-, CD34+, HLA-

DR+, GA-, Cytoplasmic CD3-,  CD1a-, 

CD19-, CD79a-, CD10-, CD123-, CD56-, 

Tdt- 

1373 AUL 64 47, XX +10 

CD1a-, CD2-, CD3-, Cytoplasmic CD3-, 

CD4-, CD8-, CD5+, CD7+, Partial 

CD34+, TdT-, CD56-, CD11b-, CD14-, 

CD64-. 

1169 AUL 65 

40-42, XY, -5, add(7)(q11.2),  

-12, -13, add15(p11.2),  

-16, -17,-20 

CD34+, CD117+, MPO-, CD3-, CD79a-, 

CD19-, CD10-, CD11b-, CD14-, CD4-, 

CD56-. 

1568 AUL 78 

45, XY, -2, add(3)(q12), 

add(4)(q25), i(5)(p10), -6, 

del(7)(q22), +8, -11, add13(q34), 

-16, -17, -20 

Dim CD45+, MPO-, CD13+, CD33-, 

CD117+, Partial CD34+, CD36-, CD64-, 

CD14-, CD11b-, cCD3-, CD7-, CD19-, 

CD10-, CD79a-, CD41-, CD61-, GA-, 

CD123-, CD4-, CD56-. 

5694 AUL 54 45, X -Y 

CD7+, Partial CD33+, Partial CD117+, 

Partial HLA-DR+, CD13-, CD11b-, 

CD4+, CD123dim+, CD71dim+, CD38-, 

MPO-, CD19-, Cytoplasmic CD3-, 

CD79a-, CD56-, CD64-, CD14-, Tdt-, 

CD45dim+. 
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348 
MPAL M/T, 

NOS 
33 

46, XY, add(4)(q21), 

add(9)(p22), del(20)(q1?) 

Cytoplasmic CD3+, MPO+, CD7+, 

CD13+, CD33+, CD34+, CD56+, HLA-

DR+, Tdt+, CD4-, CD8-, CD10-, CD20-, 

CD117-. 

281 
MPAL M/B, 

NOS 
44 46, XX[20] 

CD19+, CD79a+, Partial CD33+, CD34+, 

CD11b+, MPO+, Partial Tdt+, CD3- and 

CD117-. 

683 
MPAL M/B, 

NOS 
36 46, XX, t(13;14)(q14;q24) 

MPO+, Partial CD3+, CD33-, CD11b-, 

CD117-, CD34+, CD19+, CD10-, 

CD79a+, Partial TDT+, CD3-, CD7-.  

1251 

MPAL with 

t(9;22)(q34.

1;q11.2) 

61 46, XY, t(9;22)(q34;q11.2) 

One population expressing CD34+, 

CD19+, CD10+, CD79a+, Tdt+, cCD3- 

and another expressing CD34+, MPO+ 

CD19+ (partial), CD10-, CD79a-, cCD3-. 

1408 

MPAL with 

t(9;22)(q34.

1;q11.2) 

47 45, XY, -7, t(9;22) 

CD3-, Cytoplasmic CD3-, CD7+, CD19+, 

CD10+, CD79a+, TdT+, CD13+, CD33+, 

CD117+, CD11b-, CD34+ and MPO+.  

1034 

MPAL with 

t(9;22)(q34.

1;q11.2) 

22 46, XY, t(9;22)(q34;q11.2) 

MPO+, Partial CD33+, CD13-, CD36-, 

CD64-, CD14-, Partial CD19+, CD10+, 

CD79a+, TdT+, CD34+, CD117-, CD3-, 

CD7-. 

1030 

MPAL with 

t(9;22)(q34.

1;q11.2) 

32 

46, XY, add(1)(q21),  

der(9)t(1;9) (q25;q34),  

der(22)t(9;22)(q34;q11.2) 

MPO+, CD33+, CD13-, CD19+ CD79a+, 

TdT+, CD34+, CD3- 

5684 

MPAL with 

t(9;22)(q34.

1;q11.2) 

64 46, XX, der9 inv9 t(9;22) 

CD3-, CD7+, CD19+, CD10+, CD79a+, 

TdT+, CD13+, CD33+, CD117+, CD11b-, 

CD34+ and MPO+.  

 

Age: age at diagnosis; v, variable chromosome; MPO, Myeloperoxidase, a protein synthesized 

during myeloid differentiation. 
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Supplementary Table 2. ALAL patients: DNA repair and chromosome stability gene 

mutations. 

Gene information were cited from Genecards and Wikipedia. 

Patient ID Mutations 

1408     
BRCA2 (stop-gain, S1001*), involved in repair of damaged DNA(15). 

VAF=0.51. 

1373 

ERCC6 (frameshift, K476Rfs*11). Coding for Cockayne syndrome B (CSB) 

protein, which is important in transcription-coupled excision DNA repair (16). 

VAF=0.42. 

1568 

MDC1 (Inframe deletion of 40 amino acids, S1570_E1610del), Mediator of 

DNA Damage Checkpoint protein 1(17-20). VAF=0.23. 

 

TP53 (V143M, and deletion of 17/17p), involved in DNA repair. V143M is a 

deleterious common mutation according to TP53 mutation database 

[http://p53.iarc.fr/, number of occurrence in somatic dataset (number of 

tumors reported to carry this mutation) = 35]. Mutation in the same position 

have been recorded in 50 cancer samples in COSMIC database and 39 cancer 

samples in cbioportal TCGA pan cancer database (21). VAF=0.25. 

683 

PRKDC (frameshift, I1085Sfs*17), also known as DNA-PKcs is a kinase that 

acts as a molecular sensor for DNA damage. Involved in DNA non-

homologous end joining required for double-strand break (DSB) repair and 

VDJ recombination (22-24). VAF=0.15. 

774 
RAD21 (K70E), involved in the repair of DNA double-strand breaks, as well 

as in chromatid cohesion during mitosis (25, 26). VAF=0.13. 

1542 

FANCD2 (frameshift, Y103Lfs*77), required for maintenance of 

chromosomal stability. Promotes accurate and efficient pairing of homologs 

during meiosis. Involved in the repair of DNA double-strand breaks. FANCD2 

mutant mice have a significantly increased incidence of cancer. Humans with 

a FANCD2 deficiency have increased risk of AML (27-33). VAF=0.69 

http://p53.iarc.fr/
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ERCC8 (P53T), Excision Repair 8, involved in DNA repair pathway. 

VAF=0.51. 

1190 

TDG (Inframe insertion, I137_P141dup), G/T Mismatch-Specific Thymine 

DNA Glycosylase, involved in DNA base excision repair (34, 35). VAF=0.06 

PARP1 (K324Q), involved in DNA base excision repair pathway (36-40). 

VAF=0.45. 

1169 

TP53 (E286K, and deletion of 17/17p), involved in DNA repair. E286K is a 

common deleterious mutation according to TP53 mutation database 

[http://p53.iarc.fr/, number of occurrence in somatic dataset (number of 

tumors reported to carry this mutation) = 96]. Hotspot mutation, mutation in 

the same position have been recorded in 113 cancer samples in COSMIC 

database and 101 cancer samples in cbioportal TCGA pan cancer 

database(21). VAF=0.2. 

 

NEK1 (stop-gain, Y168*), involved in DNA damage sensing/repair pathway 

(41-43). VAF=0.26. 

5694 
CHEK1 (D47N), checkpoint Kinase 1, It is required for checkpoint mediated 

cell cycle arrest in response to DNA damage (44, 45).VAF=0.14. 

1251 

E2F7 (Q506L), involved in DNA damage response: up-regulated by P53 

following genotoxic stress, and acts as a downstream effector of TP53-

dependent repression of target genes involved in DNA replication (46-48). 

VAF=0.47. 

 

SPC24 (R5C), acts as a component of the essential kinetochore-associated 

NDC80 complex, which is required for chromosome segregation and spindle 

checkpoint activity (49). VAF=0.5. 

1030 

RAD51AP1 (A104D), may participate in a common DNA damage response 

pathway associated with the activation of homologous recombination and 

double-strand break repair (50-54). VAF=0.06. 

1034 
RPA2 (A100V), Replication Protein A2, involved in DNA replication, repair, 

recombination and telomere maintenance (55-57). VAF=0.19. 

http://p53.iarc.fr/
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Supplementary Table 3.  The mutation list of ALAL patients.  

(see excel file “Mutation list of ALAL.xlsx”) 
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Supplementary Figure Legends 

Supplementary Figure 1. A. Cluster analysis of RNA sequencing results of 8 ALAL samples, 

clustered together with RNA sequencing data of AML (randomly selected, 25 cases from the 

TCGA AML cohort), pediatric B-ALL and T-ALL (randomly selected, 25 cases of B-ALL and 25 

cases of T-ALL from EGAS00001001858)(58). The cluster analysis was performed using 367 

myeloid/lymphoid expressing signature genes. B. Hierarchical tree showing the Cluster analysis 

result of (A). The ALAL samples were highlighted with blue color rectangle boxes. 

Supplementary Figure 2. A. Overall survival analysis of ALAL patient based on disease subtype. 

B. Overall survival analysis of ALAL patient based on the age (>60 vs <60) of patients. P values 

were calculated by Log-rank test. 

 






	Supplementary Methods
	S1
	S2

