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Supplementary Methods  

scRNA-seq bioinformatics assembly  

High-quality filtered cells1 were used to define lncRNAs with a high-confident model.2-5 For each 

subject (healthy donors or MDS patients), reads were pooled and mapped to the human hg19 reference 

genome using aligner TopHat2, which was supplied with GENCODE GTF file as a gene model 

reference. We used a previously published two-step mapping strategy6 to obtain and combine splice 

junctions from all subjects. In the first round, novel splice junctions were identified in all subjects and 

combined to obtain a set of novel junctions. In the second round, mapping was performed, with the 

combined junctions using option "-j" (--raw-juncs) and "--no-novel-juncs". The sorted BAM files 

obtained from the second round were input into Cufflinks to assemble transcripts. New transcripts 

were assembled for each subject individually using Cufflinks with discovery mode ("-g" option) and 

with parameters --min-isoform-fraction =0.0, --minfrags-per-transfrag =1 and --upper-quartile-norm. 

Finally, Cuffmerge7 was used to combine the transcriptomes of all subjects. These transcripts included 

lncRNAs, protein-coding mRNAs, other noncoding RNAs, and even DNA contamination, whereby 

further filtering was needed. 
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High-Confidence filtering pipeline to identify novel lncRNAs 

Bedtools, bedops, and perl/R scripts were utilized to filter out assembled transcripts, based on 

published lncRNA identification protocols:6,8  

1. Transcripts shorter than 200 nt in length and with only one exon (a high chance to be DNA 

contamination or pre-splicing mRNAs) were removed.  

2. We used BEDTools to intersect our de novo transcript models with transcript models from the 

RefSeq, UCSC and Ensembl databases, and discarded all transcripts overlapping at least 1 bp with any 

known mRNA exons.  

3. We removed the transcripts with low coverage below 3 reads per base.  

4. Filtering with tools of assessing protein coding potential by BlastX/hmmer/getORF. BlastX: Blast 

tools v6 were used to translate and align assembled transcripts against a subset of the non-redundant 

(NR) protein database to peptide homology with command: blastx -query <input.fasta> -strand plus -

db db/nr -evalue 0.000001 -outfmt 6 -gilist <gilist> - max_target_seqs. Only hits above a significance 

threshold of Expect value < 10-6 were considered significant. HMMER/Pfam: PfamScan 

(ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/PfamScan.tar.gz, version 7) was used to identify 

transcripts containing protein-coding domains annotated in Pfam database. Both PfamA and PfamB-

quality families were provided as input to HMMER3 

(ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/, files Pfam-A.hmm, Pfam- A.hmm.dat, 

Pfam-B.hmm and Pfam-B.hmm.dat). getORF: GetORF9 in EMBOSS was used in Galaxy with the 

following parameters [Code: Standard; Minimum nucleotide ORF size: 300] to identify any open 

reading frames longer than 300 nt starting with methionine. 

5. CPAT: we used an online tool, CPAT,9 to exclude transcripts with characteristic coding features 

independent of their conservation. The CPAT score of a given transcript indicates its protein-coding 

ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/PfamScan.tar.gz
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potential through logistic regression of four sequence features of known protein-coding transcripts and 

noncoding RNA. As a control, we applied CPAT on annotated proteins and lncRNAs in GENCODE 

(Figure 1C).  

6. Filtering known lncRNAs and pseudogenes. We removed transcripts which overlapped with 

pseudogenes (combining Yale Pseudo60 genes, Vega pseudogenes and ENSEMBL) and known 

lncRNAs in GENCODE.10,11 

 

Integration with CAGE to get more reliable lncRNAs and cell type specificity confirmation 

When assembling lncRNAs with gene expression data alone, only high expressed transcripts were 

included in ours and other’s pipelines2-6,8 to guarantee the quality. Recently, Hon et al. utilized the 

advantage of CAGE datasets, which can accurately capture 5’ ends of lncRNAs, to refine existed 

transcript models and build an atlas of human lncRNAs with accurate 5’ ends.12 

Supported by CAGE, we lowered the cutoff of expression levels for transcripts filtering with a 

consideration that transcripts with medium expression levels that were supported by CAGE datasets 

were expressed in human CD34+ cells. We used the same strategies through considering CAGE cluster 

expression levels, exon number and exon length of transcripts, and the distance between CAGE cluster 

to transcript, and identified another 281 lncRNAs and deposited into GEOs. 

Further, we utilized gene expression of large numbers of cell types in CAGE study to validate the cell 

type specificity of lncRNAs. We sought to compare if those lineage-specific lncRNAs in the current 

study also showed preferential expression in corresponding samples in CAGE data. Though no 

perfectly matched cell types could be found in a CAGE dataset, we chose the closest cell types in 

CAGE (ie. erythrocytes progenitors, defined as MEP-like) to check the expression of both mRNAs and 

lncRNAs. Expression correlation was calculated as: (expression of mRNAs or lncRNAs in 
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MEP)/(expression of mRNAs or lncRNAs in non-MEP) in our study, with (expression of mRNAs or 

lncRNAs in MEP-like)/(expression of mRNAs or lncRNAs in all other cell types) in CAGE data. 

 

Evaluation of cell and cell type specificity 

We plotted variance against mean gene expression across cells or cell types for variation. To quantify 

whether lncRNAs exhibited higher cell type-specific expression patterns than did protein-coding 

genes, we calculated a tissue specificity score for each transcript using an entropy-based metric that 

relies on Jensen-Shannon (JS) divergence.6 The specificity score is defined as 1-(JSdist(p,q)) where p 

is the density of expression [probability vector of log10(TPM+ 1)] of a given gene across all 

conditions, and q is the unit vector for that cell type (ie. perfect expression in that particular cell type). 

JSdist is a function that used to calculate pairwise Jensen-Shannon distances between columns in R 

package “cummeRbund”. This specificity metric (ranging from 0 to 1) quantifies the similarity 

between transcripts’ expression patterns across cell types. JS specific score = 1 means a transcript is 

expressed exclusively in that condition.13 

 

Quantitative RT-PCR and bioinformatics analysis 

FACS-sorted bulk samples from three new healthy donors were used for quantitative RT-PCR 

validation. Combination of surface markers for each cell population14 is illustrated in Online 

Supplementary Figure S2. Total RNA was isolated using the Agencourt RNAdvance Cell v2 kit 

(Beckman Coulter), and assessed by using a Nanodrop spectrophotometer (NanoDrop Technologies). 

Complementary DNA was synthesized by using the Fluidigm Reverse Transcription Master Mix 

(Fluidigm). cDNA from this new set of bulk samples and whole transcriptome amplification (WTA) 

products from 391 single CD34+ cells were subjected to gene expression analysis. A list of lineage-
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specific lncRNAs (n = 39) and mRNAs (n = 14) and two housekeeping genes (Online Supplementary 

Table S6) were preamplified and analyzed using quantitative RT-PCR following manufacturer’s 

protocol (Fluidigm). Gene expression preamplification was performed with Fluidigm Preamp Master 

Mix (Fluidigm) and TaqMan Assays (Thermofisher). Subsequently, gene expression analysis was 

performed in a 96.96 quantitative PCR Dynamic Array on the Fluidigm Biomark instrument using Fast 

TaqMan Assays (Thermofisher) as described previously.15  

Single-cell and bulk sample gene expression data were firstly analyzed with the Fluidigm Data 

Collection software. Expression values over the cutoff of the machine (CT value > 27) were set to 28.16 

For assays that were performed in duplicate, the mean of the duplicate was used for subsequent 

analysis. After filtering, ΔCT values were calculated by cell-wise normalization to the mean expression 

level of two housekeeping genes (ACTB and GAPDH) through subtracting of their mean CT value. 

Cell type specificity was calculated as ΔΔCT, which defined as the difference of ΔCT values of one 

cell type with all the others.  

 

Functional enrichment analysis of lncRNA-encoding gene sets by “guilt-by-association” 

approach 

We adopted a comprehensive “guilt-by-association” strategy comprising three methods to identify 

associated protein-coding gene sets of lncRNAs (Online Supplementary Results). 

1) Co-expression: co-expression has been widely used to annotate functions of lncRNAs.13, 17-20 We 

downloaded lncRNA-mRNA co-expression relationships from lncPath (LncPath package in R), which 

was based on 28 scRNA-seq data sets. To check the applicable, we confirmed that their co-expressed 

pairs also showed higher-co-expression in our dataset. We chose to use theirs, because network build 
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from the large dataset thus is more powerful to capture functional similarity. All co-expressed mRNAs 

in lncPath of given lncRNAs were defined as associated gene sets. 

2) Considering the cis role refers to an lncRNA acting on neighboring target genes, we searched 

coding genes 10-kb upstream and downstream of lncRNAs, and identified possible cis target gene 

sets.21 

3) We used Linc2Go as a functional annotation resource for lncRNAs.22 Lnc2GO integrated 

microRNA-mRNA and microRNA-lncRNA interaction data to generate comprehensive functional 

annotations for lncRNAs based on common shared miRNAs, as lncRNAs and mRNAs targeted by 

same miRNAs should be functionally similar. 

The resulting gene sets from these approaches were subjected to functional GO enrichment analysis. 

Statistically significant GO terms in Biological Process domain were identified with the database for 

annotation by topGO.23 The false discovery rate (FDR) calculated with the Benjamini-Hochberg 

method was used to measure the significance level of the GO terms. Pathway gene sets were 

downloaded from Pathway Commons (https://www.pathwaycommons.org/).24 Fisher’s exact test was 

used to calculate the statistical significance of this over-representation.25 Genomatix 

(https://www.genomatix.de) was used to identify the enriched functions and pathways of gene sets.26 

 

Weighted Gene Co-expression Network Analysis (WGCNA)  

Coexpression analysis of lncRNAs and protein-coding transcripts was performed with WGCNA 

package in R.27 Log transformed TPM values of transcripts were used as input for WGCNA and signed 

weighted correlation networks were built by calculating correlation coefficients between the top 2000 

variable gene pairs. Specifically, adjacency matrices were constructed by setting the soft threshold 
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value of each correlation matrix at 6 (identified by scale-free examination), and the adjacency matrix 

was transformed to a topological overlap matrix (TOM). The matrix 1-TOM was used as the input to 

group genes using the average linkage hierarchical clustering method. Finally, we utilized dynamic 

tree cut algorithm and the merge cut height and minimum module size were set to 0.2 and 10, 

respectively. Furthermore, an expression profile of each module was represented by its first principal 

component (module eigengene), which can explain the most variation of the module expression levels. 

We constructed cell type-specific mathematical vectors. In those vectors, each element represented one 

cell, with a value of 1, if the cell belonged to a distinct cell type and 0 otherwise. The Pearson 

correlation between eigengenes of network modules and the condition vectors was then calculated for 

association estimation. Our analysis revealed seven modules (Figure 3C and Online Supplementary 

Table S4), which were then characterized for GO term enrichment on the protein-coding genes using 

topGO.23 GO SamSim was used to cluster significant enriched GO terms and visualize representative 

ones. 

 

Reconstruction of a pseudotemporal order of hematopoietic cells 

Diffusion map was used to estimate a differentiation lineage trajectory with the Destiny package in 

R.28 Pseudotime ordering was implemented with Diffusion Pseudo Time.29 

 

Protein-protein-lncRNA network analysis  

A network was created through integrating STRING 7.0,30 co-expression annotated in LncPath, and 

chromosomal neighborliness. The network analysis was done with Cytoscape.31 

 

ChIP-seq and histone modification analysis 
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GATA1 binding (Encode ID: ENCSR000EFT), H3K27Ac binding (Encode ID: ENCSR000AKP), 

H3K4me2 binding (ENCODE ID: ENCSR000AKT), H3K27me3 binding (ENCODE ID: 

ENCSR000AKQ), and H3K79me2 binding (ENCODE ID: ENCSR000APD) data were downloaded 

and used for analysis of protein-coding and lncRNA-encoding genes in our study.  

 

Supplementary Results  

Integration with CAGE to get more lncRNAs and cell type specificity confirmation 

In Chung-Chau Hon’s study,12 they performed FAMTOM5 cap analysis of gene expression (CAGE) 

and generated a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5’ ends 

and expression profiles across 1,829 samples from the major human primary cell types and tissues. We 

referred to CAGE data as a reliable source to include those transcripts with medium expression that 

were filtered by expression levels in our high-confidence filtering pipeline illustrated above.  

We referred to CAGE data in three ways. 1) In de novo transcriptome reconstruction in the current 

study, we filtered the data to remove low expressed transcripts. Comparing with CAGE, we lowered 

our cutoff for gene abundance in lncRNA assembly pipeline and defined the assembled transcripts with 

medium expression level but could be supported by CAGE. We also included these 281 transcripts 

(Online Supplementary File 2) as defined lncRNAs in human CD34+ cells and uploaded to GEO 

(GSE99095). 2) By comparing defined lncRNAs in the current study with Chung-Chau Hon’s study, 

we found that around 1/3 assembled lncRNAs overlapped with CAGE annotation (Online 

Supplementary Figure S10A), which was reasonable for several reasons. Chung-Chau Hon’s study 

included 1829 samples from the major human primary cell types and tissues, including a lot more cell 

types other than human CD34+ cells, and subpopulation of human bone marrow derived CD34+ cells 

were barely included in CAGE data. Also, as we argued, some cell type-specific lncRNAs that could 

https://www.encodeproject.org/experiments/ENCSR000EFT/
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be diluted in population samples might be annotated in our single cell data. Those lncRNAs defined in 

our study overlapped with CAGE data were preferential candidates for functional studies. 3) Next, we 

utilized CAGE data set to check if those lineage-specific lncRNAs in the current study also showed 

preferential expression in corresponding samples in CAGE data. In correlation analysis, R values were 

0.442 for mRNA expression and 0.243 lncRNA expression (Online Supplementary Figure S10B), 

which suggested rough consistency of preferred expression of lineage-specific lncRNAs in both 

datasets.  

 

Characterization of lncRNAs defined in human CD34+ hematopoietic cells 

lncRNAs present in human CD34+ cells, both previously annotated and putative novel ones, were 

distributed across the human genome (Online Supplementary Figure S3A). On average, lncRNAs were 

much less frequent than were mRNAs (Online Supplementary Figure S3B). Compared with coding 

transcripts (7.4 exons and 65 K nt, on average), lncRNAs had fewer exons and were shorter in length, 

while novel lncRNAs (2.4 exons and 1 K nt, on average) tended to even lower exon numbers (Online 

Supplementary Figure S3C) and shorter length (Online Supplementary Figure S3D) compared to 

annotated lncRNAs (3.1 exons and 26 K nt, on average). A PhastCons score was used to evaluate 

conservation of transcripts.32 

We found that novel and annotated lncRNAs were similarly less well conserved compared to protein 

coding transcripts (Online Supplementary Figure S3E). We extracted transcript start sites (TSS) of all 

protein coding genes, and ngs.plot was used to calculate and visualize the locations of annotated and 

novel lncRNAs relative to TSS. Novel lncRNAs exhibited a similar distance to TSS as did annotated 

lncRNAs (Online Supplementary Figure S3F). We then analyzed expression patterns of defined 

lncRNAs that were localized within 10 kb from a coding gene. lncRNAs showed higher correlation 
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with expression of neighboring protein-coding genes than did any random pair of chromosomal 

neighbors, and also higher than the correlation of paired neighboring coding genes (P < 0.0001, 

Kolomogorv-Smirnov test) (Online Supplementary Figure S3G).  

 

“Guilt by association” strategy 

lncRNAs are weakly conserved in sequences;33,34 and data for interaction between lncRNAs and 

protein-coding genes are mostly lacking. Functional studies by experimental methods are only 

conducted for limited number of lncRNAs. Additionally, a large number of novel lncRNAs have been 

annotated with the use of whole transcriptome sequencing, such that computational analysis has been 

used to impute putative functions of lncRNAs.  

One genome wide method to impute functions of lncRNAs is analysis of their association with 

mRNAs of known functions, or “guilt by association”.18 lncRNAs can influence the expression of 

neighboring genes in a cis manner. Functions of lncRNAs have been determined by analyzing 

proximal protein-coding genes.35-41 Conversely, lncRNAs have also been suggested to primarily affect 

gene expression in trans,42-44 and functions of lncRNAs have been inferred from co-expressed protein-

coding genes.34,45-47  

We hypothesized that lncRNAs and protein-coding genes involved in the same biological functional 

pathways were likely neighbors or coordinately regulated.32,34,48 To this end, we adopted a 

comprehensive “guilt-by-association” approach, by taking into account either physically proximate, 

co-expressed or co-regulated coding genes, in order to impute putative functions of lncRNAs present 

in human CD34+ cells and differentially expressed lncRNAs in MDS and aneuploid cells. “Guilt-by-

association” also was applied to WGCNA analysis, which was based on unsupervised clustering of co-

expressed mRNAs and lncRNAs (Online Supplementary Methods). 
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Consistent expression profiles with dataset GSE75478 

Identification of cell types of individual cells within the CD34+ cell population has been described 

previously.1 Specifically, an HSPC type was assigned to each t-SNE cluster based on significance in 

overlapping between HSPC- and cluster-specific genes 

(http://www.jdstemcellresearch.ca/index_files/ResearchData.htm)49 with one-tailed fisher test.  

We then compared both protein-encoding and lncRNA-encoding gene expression between assigned 

types of cells in our study and Velten’s study50 with RNA sequencing results of sorted single human 

HSPCs, and there was overall agreement.  

For MEPs as an example, we first filtered to generate a list of mRNAs and lncRNAs captured in both 

datasets, for which there were 11,427 mRNAs and 775 lncRNAs. We then calculated fold change of 

expression levels of all captured mRNAs and lncRNAs as: LogTPM (gene expression in MEP) - 

LogTPM (gene expression in non-MEP). Log (fold change of expression level) of both captured 

mRNAs and lncRNAs showed significant linear correlation in two datasets (Online Supplementary 

Figure S7A). Next, we analyzed preferentially expressed genes in MEPs by one-tailed Pearson 

comparison (P < 0.05) in both datasets, seeking common genes between two datasets (Online 

Supplementary Figure S7B). There were 3,934 common mRNAs and 85 common lncRNAs that were 

preferentially expressed in MEP in both datasets, and the Log (fold change) of these gene expression 

levels showed significant linear correlation. Similar results were observed for other lineages such as 

HSC (Online Supplementary Figure S8). 

http://www.jdstemcellresearch.ca/index_files/ResearchData.htm
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In brief, agreement was observed between our data and online datasets based on different sample 

sources, cell processing, sorting strategy and cell type defining, composition of cell populations, and 

different platforms of scRNA-seq, indicating the recurrence of defined lncRNA patterns in our study. 

 

Quantitative RT-PCR analysis of lineage-specific lncRNAs and mRNAs  

For validation, we applied multiplex quantitative RT-PCR for a list of lineage-specific lncRNAs and 

mRNAs (Online Supplementary Table S6) to aliquoted WTA of 391 single CD34+ cells from four 

healthy donors and a new set of flow cytometry sorted bulk samples from three new healthy donors, in 

order to validate the expression of defined potential novel lncRNAs and lineage-specific expression 

patterns of lncRNAs. Indeed, all 39 lineage-specific lncRNAs including 20 potential novel ones were 

detectable with RT-PCR in single cell and bulk samples, while negative controls (no-template control 

and no-assay control) were all undetectable. By comparing their expression in one cell type with all the 

others, 35/39 lineage specific lncRNAs showed preferred expression in the corresponding lineages 

compared with other cells (Online Supplementary Figure S9A), which was recurrent in independent 

sorted bulk samples (Online Supplementary Figure S9B). As controls, well-recognized lineage-specific 

mRNAs (four for HSC, four for MEP, and six for GMP/ProB/ETP) were also analyzed. Similarly, they 

showed preferred expression in corresponding sorted bulk lineage samples (Online Supplementary 

Figure S9).  

 

lncRNAs exhibit differential expression in myelodysplastic syndromes and aneuploid cells  

By comparing gene expression of cells from MDS patients with cells from healthy donors, there were 

3,373 mRNAs upregulated and 2,082 downregulated (P < 0.05). Pathway analysis revealed that 

upregulated genes were enriched in the oncogene p53 pathway; cell survival such as TNF alpha/NF-kB, 



 13 

AKT signaling; and the proteasome complex. Downregulated genes showed enrichment in the immune 

related pathways (such as IL-2, IL-12, and STAT4 signaling of Th1 development, the BCR signaling 

pathway) and the DNA repair pathways (such as the Fanconi anemia pathway and BRCA1 dependent 

UB ligase activity) (Online Supplementary Table S9). Similarly, we identified lncRNAs to be 

differentially expressed between MDS patients and healthy donors (P < 0.05): 372 and 590 were 

upregulated and downregulated in MDS patients, respectively (Online Supplementary Table S10).  
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Figure Legends 

Supplementary Figure S1. FACS sorting strategy and samples for RNA sequencing (A) Bone marrow 

mononuclear cell (BM-MNC) isolation was performed with fresh BM samples. BM-MNCs were stained with 

lineage markers in Pacific blue (anti-CD3, anti-CD14, and anti-CD19), anti-CD34-PE, and anti-CD38-APC. (B) 

For four healthy donors and patient 4, Lineage-CD34+CD38- and Lineage-CD34+CD38+ cell populations were 

sorted and subjected to sequencing separately, while for patients 1, 2, 3, and 5, only the CD34+ cell population 

was sorted and subjected to sequencing due to limited cell numbers. Total numbers of cells of individual 

samples subjected to further analysis after sequencing data filtering were shown. 

Supplementary Figure S2. FACS sorting strategy and bulk samples for RT-PCR (A) BM-MNC isolation 

was performed with fresh BM samples. BM-MNCs were stained with lineage markers in Pacific blue (anti-

human lineage cocktail: anti-CD3, anti-CD14, anti-CD16, anti-CD19, anti-CD20, and anti-CD56), anti-CD34-

PE, anti-CD38-APC, and anti-CD45RA-BV510. (B) For three new healthy donors, HSC/MLP (Lin-

CD34+CD38-), B/NK/GMP (Lin-CD34+CD38+CD45RA+), and CMP/MEP (Lin-CD34+CD38+CD45RA-) 

populations were sorted and subjected to RNA extraction and RT-PCR analysis in triplicate. 

Supplementary Figure S3. Characterization of lncRNAs expressed in single human CD34+ cells. (A) 

Distribution of lncRNAs expressed in human CD34+ cells across human genome. Outer track shows human 

chromosomes 1 to 22; middle track shows positions of 2,892 lncRNAs defined in single human CD34+ cells, 

with gene names on inner track. (B) Percentages of single human CD34+ cells with expression of lncRNAs or 

mRNAs. The number of exons (C), length of transcripts (D), species conservation (E), and distribution of 

distance of annotated and novel lncRNAs to TSS of mRNA (F) in single human CD34+ cells. (G) Co-expression 

of lncRNAs or mRNAs with neighboring mRNAs. CDF, cumulative distribution function. 

Supplementary Figure S4. Single cell RNA sequencing is more powerful than bulk approach in assessing 

gene expression with high variation. Expression of Gene A and Gene B in single cells and in bulk samplse 

composed with the same cells are shown on the left and right, respectively. Mean/median expression levels of 
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Gene A and Gene B in single cells, standard deviation, and standard error of mean are shown on the right. Gene 

B had the same mean expression levels with Gene A in bulk samples but higher cell-to-cell variation. Given the 

threshold of detecting gene expression is 30, using bulk samples, both Gene A and Gene B were undetectable. 

However, with single cell approach, Gene B could be detected in two single cells (labeled in dark red) while 

Gene A was still undetectable.  

Supplementary Figure S5. Identification of highly variable genes (HVGs) across cells and batch 

correction. (A) Seurat software was employed to identify HVGs across lncRNAs expression in single cell RNA 

sequencing data, in which a z-score cutoff of 0.5 was applied to increase the power of unsupervised dimensional 

reduction techniques: only lncRNA-encoding genes showing expression > 0.5 and variance > 0.5 STD were 

retained for analysis (in black square). (B) Single cells from four healthy donors were plotted in a tSNE plot and 

colored respectively, without batch correction (left) and with batch correction (right).  

Supplementary Figure S6. Cell-to-cell variation of lncRNA and mRNA expression in individual cell 

populations. Variance of lncRNA and mRNA expression in HSC, MLP, MEP, GMP, ProB, and ETP were 

plotted, respectively. x axis, Log(TPM+1) of gene expression; y axis, variance. Grey and red dots represent 

mRNA and lncRNA expression in single cells, respectively. 

Supplementary Figure S7. Agreement of mRNA and lncRNA expression in MEP between the current 

study and the single cell RNA sequencing dataset GSE75478. GSE75478 is a study to characterize early 

human hematopoiesis on a single cell level which combines flow-cytometry, single cell transcriptome, and 

single cell lineage fate data.49 Healthy human bone marrow cells were labeled with FACS surface makers to 

identify different subpopulations of human HSPCs before subjecting to single cell RNA sequencing and other 

experiments. (A) Log fold changes of mRNA (left) and lncRNA (right) expression in MEPs vs. non-MEPs in 

the current study were plotted on x axis, while those in the GSE75478 dataset were plotted on y axis, showing a 

linear correlation for both mRNA and lncRNA expression between two studies. (B) mRNAs (left) and lncRNAs 

(right) that were preferentially expressed in MEPs were defined using one-side Pearson comparison between 
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MEPs and non-MEPs with a P value < 0.05. There were 3,934 common mRNAs and 85 common lncRNAs that 

were preferentially expressed in MEPs in both studies, which were significantly higher than expected number of 

common genes (P < 0.0001). 

Supplementary Figure S8. Agreement of mRNA and lncRNA expression in HSCs between the current 

study and the single cell RNA sequencing dataset GSE75478. (A) Log fold changes of mRNA (left) and 

lncRNA (right) expression in HSCs vs. non-HSCs in the current study were plotted on x axis, while those in the 

GSE75478 dataset were plotted on y axis, resulting in a linear correlation was observed for both mRNA and 

lncRNA expression between two studies. (B) mRNAs (left) and lncRNAs (right) that were preferentially 

expressed in HSCs were defined using one-side Pearson comparison between HSCs and non-HSCs with a P 

value < 0.05. There were 269 common mRNAs and 19 common lncRNAs that were preferentially expressed in 

HSCs in both studies, which were significantly higher than expected number of common genes (P < 0.0001). 

Supplementary Figure S9. Quantitative RT-PCR analysis of the expression of signature lncRNAs and 

mRNAs. (A) Single cell samples. Lineage specific mRNAs and lncRNAs were plotted on x axes. y axes show 

ΔΔCT values (ddCT) of gene expression in HSC/MLPs vs. non-HSC/MLPs (top); MEPs vs. non-MEPs 

(middle); and ProBs vs. non-ProBs, ETPs vs. non-ETPs, and GMPs vs. non-GMPs (bottom). (B) Flow 

cytometry sorted bulk samples. Lineage specific mRNAs and lncRNAs were plotted on x axes. y axes represent 

ΔΔCT values (ddCT) of gene expression in HSC/MLPs vs. non-HSC/MLPs (top) and MEPs vs. non-MEPs 

(bottom). (C) Expression of representative lineage-specific mRNAs for HSC/MLP, MEP, and ProB/ETP/GMP 

along differentiation trees, measured by quantitative RT-PCR analysis. Expression are presented as relative 

quantity in one population vs. expression in all the others.  

Supplementary Figure S10. Integration with CAGE dataset. (A) A schematic diagram of defined lncRNAs 

by de novo transcriptome assembling in the current study and in the CAGE data. There was overlap of lncRNAs 

defined by our pipeline and the CAGE study. Low expressed transcripts were filtered in our pipeline; however, 

we lowered threshold of expression levels, and those transcripts with medium expression levels and supported 
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by CAGE were also considered to be expressed in human CD34+ cells. The CAGE study defined much more 

lncRNAs than our study probably because of a large number of cell types included. On the other hand, our 

single cell approach may have advantage in defining transcripts in a minority of cells. (B) Log fold changes of 

mRNA (left) and lncRNA (right) expression in MEP-likes vs. non-MEP-likes in the CAGE study were plotted 

on x axis, while those in the current study were plotted on y axis. A correlation with R value = 0.442 (mRNAs) 

and R value = 0.243 (lncRNAs) was observed between two studies. 
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