Targeted next generation sequencing reveals high mutation frequency of CREBBP, BCL2 and KMT2D in high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements

Solène M. Evrard,^{1,2,3} Sarah Péricart,¹ David Grand,¹ Nadia Amara,¹ Frédéric Escudié,⁴ Julia Gilhodes,⁴ Pierre Bories,⁵ Alexandra Traverse-Glehen,⁶ Romain Dubois,⁷ Pierre Brousset,^{1,2,3} Marie Parrens⁸ and Camille Laurent^{1,2,3}

¹Pathology and Cytology Department, CHU Toulouse, IUCT Oncopole; ²Toulouse III Paul Sabatier University; ³Inserm, UMR1037 Centre de Recherche en Cancerologie de Toulouse, laboratoire d'excellence TOUCAN; ⁴Department of Biostatistics, IUCT-Oncopole, CHU Toulouse; ⁵Regional Cancer Network Onco-occitanie, IUCT-Oncopole, Toulouse; ⁶Hospices Civils de Lyon, Claude Bernard Lyon 1 University, INSERM 1052, Pierre-Bénite; ⁷Institut de Pathologie, CHU Lille, Avenue Oscar Lambret and ⁸Pathology, CHU Bordeaux, Inserm U1053, France.

Correspondence: SOLÈNE M. EVRARD solene.evrard@univ-tlse3.fr doi:10.3324/haematol.2018.198572

Supplemental data

Supplemental Methods

Patients:

Twenty adult patients diagnosed with DHL or THL who harbor gene rearrangements involving *MYC* and *BCL2* or/and *BCL6* determined using the FISH test were selected¹. This cohort includes 15 patients with rearrangements of *MYC* and *BCL2*, 2 patients with rearrangements of *MYC* and *BCL2*, 2 patients with rearrangements of *MYC*, *BCL2* and *BCL6*. The COO of each tumor was assessed using the Hans algorithm². 18 patients were classified as GCB-DLBCL and 2 as non-GCB-DLBCL. All patients signed informed consent forms. Clinical, immunohistochemical and cytogenetic features of the DHL/THL patients are summarized in Table 1.

DNA extraction and quantification

Tumor DNA was extracted from a 10 μ m-thick section of FFPE samples. DNA extraction was performed using the Maxwell® 16 FFPE Plus LEV DNA Purification Kit (Promega) based on the manufacturers' instructions. Extracted DNA was quantified and qualified for an NGS assay as reported previously by our group³.

Lymphopanel design

Specific exons or hotspots of 43 clinically relevant genes involved in lymphomagenesis were selected for targeted sequencing based on an extensive literature review of NGS studies in de novo or relapsed/refractory DLBCL⁴⁻¹². These selected regions are listed in Supplementary Table S1. We used an Illumina TruSeq Custom Amplicon (TSCA dual strand, v1.5 chemistry) assay for the deep sequencing of these regions. The custom mixture of oligonucleotides generated 1224 amplicons of suitable size (mean: 159bp and median: 153bp [150bp-180bp]) covering 124 kb. Samples were prepared following the TSCA protocol and as described elsewhere³. Multiple indexed libraries were pooled and sequenced on the Illumina MiSeq using a V3 flow cell. After pair-end sequencing (2x150 cycles), the four FastQ files generated per sample by the MiSeq Reporter software (v 2.6.2.3, Illumina) were analyzed using Amplicon DS (v1.1.13.0, Illumina). Filter criteria used for variant calling single nucleotide variants (SNVs) and short insertions and deletions (indels) are described below.

Somatic alteration assessment and filtering

In Amplicon DS software, variant scores are computed using a Poisson model that excludes calls with scores below Q20. Variants are first called separately for each pool and are then compared and combined into a single output file. The algorithm only calls variants for bases that are covered at a depth of 300X or greater for a single amplicon. Variants were called if they were present in both libraries with a mean VAF of 5% or greater. Following variant calling, variants detected by AmpliconDS software were filtered regarding their consequence. Variants that were missense variant, frameshift, stop gained, stop lost, initiator codon, inframe insertion, in-frame deletion and splice-site variant were kept and analyzed. Stop-gain, frameshift and/or splicing SNVs are referred to in the article as truncating mutations. Variants

having a frequency of 1% or more in the population (in database Exome Aggregation Consortium (ExAC) Variants, Variants Exome Sequencing Project (ESP) or 1000 Genomes Project) were considered polymorphisms and were excluded. Alamut visual (v2.8, Interactive-Biosoftware, Rouen, France) or Integrative Genomics Viewer (IGV, v2.3.97, Broad Institute, Cambridge, Massachusetts, USA) were used to look at the alignment when necessary.

To validate our Lymphopanel, we first re-sequenced patients #3,4,5, 6 and 7 with the same protocol previously described (Amplicon targeted NGS and Lymphopanel) and found precisely the same variants for each patient with similar allele frequency (Table S3). Secondly, we sequenced these 5 patients by capture hybridization sequencing using a similar panel allowing us to find the same variants (Table S3). Briefly, DNA probe sets corresponding to genomics regions of interest were designed using the NimbleGen proprietary tool. A total of 100ng of DNA was sheared with a Covaris ME220 system to provide average fragments of 200bp. The sample preparation and target enrichment were performed according to the Roche SeqCap EZ Hypercap Workflow (ROCHE). Samples were sequenced on an Illumina MiseqDX system with the Illumina V3 chemistry cartridge reagent. The variants are called with Illumina's Enrichment workflow (v0.0.0.0).

Comparator cases of DLBCL NOS and GCB-DLBCL

Comparator cases of DLBCL NOS patients were selected from recent studies of whole exome sequencing or targeted sequencing^{4–10,13–17}. From these 12 studies of whole exome sequencing or targeted sequencing in DLBCL NOS patients, 7 studies clearly set out their data with the possibility for each case to link its mutational profile to its COO and have been selected as comparator cases of GCB-DLBCL^{8–10,13-15,17}. Likewise, 3 of 12 studies including patient clinical outcome have been selected to compare the overall survival (OS) of DLBCL NOS to that of 19 DHL/THL patients with clinical outcome available^{15–17}.

AID mutation analysis

For AID mutation analysis, synonymous variants were also included, and the filter regarding the consequence of the variants was not applied. Preferential DGYW/WRCH AID target sites were targeted.

Statistical analysis

Mutation frequencies in literature were estimated by pooling data from studies of WES or targeted NGS or high-throughput sequencing in DLBCL NOS ^{4–10,13–17} or in GCB-DLBCL ^{8–10,13–15,17}. Differences in mutation frequencies were assessed using Fisher's exact test for count data. Differences in mutation pathway frequencies were assessed using the χ^2 test. All reported p-values were two-sided. Kaplan Meier survival curves were used for survival analysis. Differences in survival curves were assessed using the log-rank test. For all statistical tests, differences were considered significant at the 5% level. Statistical analyses were conducted using R 3.4.3 software or GraphPad Prism version 5.00 (GraphPad Software).

Supplemental Figure

Supplemental Tables

Gene	Exons/Hotspots	Pathway
B2M	1 and 2	Immunity
BCL2	1	Apoptosis/cell cycle
BCL6	1 to 8	Immunity
BIRC3	6 to 9	Apoptosis/cell cycle
BRAF	15	МАРК
ВТК	14 to 16	ΝϜκΒ
CARD11	4 to 9	ΝϜκΒ
CD58	1 to 3	Immunity
CD79A	2 to 4	BCR
CD79B	2 to 6	BCR
CDKN2A	1 to 3	Apoptosis/cell cycle
CDKN2B	1	Apoptosis/cell cycle
CIITA	1 to 19	Immunity
CREBBP	1 to 31	Epigenetic
DUSP2	2 to 4	МАРК
EP300	1 to 31	Epigenetic
EZH2	12, 16, 18	Epigenetic
FOXO1	1 and 2	Apoptosis/cell cycle
GNA13	1 to 4	Apoptosis/cell cycle
HIST1H1C	1	Epigenetic
ID3	1 and 2	BCR
IGLL5	1	Immunity
IRF4	1 to 8	, NFκB
ІТРКВ	1	BCR
KMT2A	1 to 27	Epigenetic
KMT2D	1 to 54	Epigenetic
MEF2B	1 to 8	Epigenetic
MFHAS1	1	Apoptosis/cell cycle
МҮС	1 to 3	Apoptosis/cell cycle
MYD88	1 to 5	ΝΓκΒ
NOTCH1	26. 27. 28 and 34	NOTCH
NOTCH2	26, 27, 28 and 34	NOTCH
PIM1	1 to 6	ΝΕκΒ
PLCG2	D1140G D334H 1845Y R665W S707Y R742P	BCR
PRDM1	1 to 7	NEKB
SOCS1	1	IAK/STAT
STATE	9 to 14	ΙΑΚ/STΔΤ
TCF3	1 to 18	BCR
ΤΝΕΔΙΡ3	1 to 8	NEKR
TNFRSF14	1 to 8	Immunity
TP52	1 to 0	Anontosis/cell cycle
TRAF2	5	
YDO1	J 12 13 15 16 17 and 18	Anontosis/cell cyclo
XPO1	12, 13, 15, 16, 17 and 18	Apoptosis/cell cycle

<u>Table S1</u>: Overview of the lymphopanel used for NGS analysis.

Patient #	Gene	Transcript	cDNA alteration	protein alteration	VAF	Total depth
10	B2M	NM_004048.2	c.20T>G	p.Leu7Ter	10%	4854
12	B2M	NM_004048.2	c.128T>G	p.Leu43Arg	42%	4412
1	BCL2	NM_000633.2	c.60T>A	c.60T>A p.His20Gln 14		1284
1	BCL2	NM_000633.2	c.31A>T	p.Asn11Tyr	25%	1872
1	BCL2	NM_000633.2	c.361C>G	p.Leu121Val	14%	1810
3	BCL2	NM_000633.2	c.585+4G>A	splice site	31%	2216
4	BCL2	NM_000633.2	c.386G>A	p.Arg129His	19%	1196
4	BCL2	NM_000633.2	c.261C>G	p.Ser87Arg	31%	804
6	BCL2	NM_000633.2	c.422G>A	p.Gly141Glu	46%	2224
6	BCL2	NM_000633.2	c.221C>A	p.Thr74Asn	50%	906
6	BCL2	NM_000633.2	c.179C>T	p.Ala60Val	51%	906
6	BCL2	NM_000633.2	c.175C>T	p.Pro59Ser	51%	906
7	BCL2	NM_000633.2	c.181G>A	p.Ala61Thr	19%	1224
7	BCL2	NM_000633.2	c.256C>T	p.Leu86Phe	18%	1224
7	BCL2	NM_000633.2	c.203G>A	p.Arg68Lys	18%	1224
7	BCL2	NM_000633.2	c.372C>A	p.Phe124Leu	17%	2442
7	BCL2	NM_000633.2	c.386_387delGCinsAG	p.Arg129Gln	11%	2444
7	BCL2	NM_000633.2	c.386G>A	p.Arg129His	6%	2438
8	BCL2	NM_000633.2	c.191A>G	91A>G p.Asp64Gly		878
8	BCL2	NM_000633.2	c.20C>T	p.Thr7lle	50%	3046
11	BCL2	NM_000633.2	c.32A>C	c.32A>C p.Asn11Thr		1442
12	BCL2	NM_000633.2	c.31A>T	p.Asn11Tyr	11%	1468
12	BCL2	NM_000633.2	c.174_175delTCinsAT	p.HisPro58GlnSer	37%	1060
13	BCL2	NM_000633.2	c.495G>C	p.Glu165Asp	45%	2420
13	BCL2	NM_000633.2	c.175C>G	p.Pro59Ala	40%	692
14	BCL2	NM_000633.2	c.524T>A	p.Leu175Gln	49%	3776
14	BCL2	NM_000633.2	c.107G>A	p.Gly36Asp	54%	2454
18	BCL2	NM_000633.2	c.13G>A	p.Gly5Arg	9%	2698
18	BCL2	NM_000633.2	c.152C>T	p.Ser51Phe	20%	1820
19	BCL2	NM_000633.2	c.338C>G	p.Ala113Gly	32%	3290
1	BCL6	NM_001706.4	c.1268T>C	p.Leu423Pro	32%	3480
10	BCL6	NM_001706.4	c.1939A>G	p.Ser647Gly	42%	4844
14	BCL6	NM_001706.4	c.1756C>G	p.Pro586Ala	49%	3714
19	BIRC3	NM_001165.4	c.1681A>G	p.Met561Val	43%	4434
16	BRAF	NM_004333.4	c.1790T>A	p.Leu597Gln	46%	2608
20	BRAF	NM_004333.4	c.1780G>A	p.Asp594Asn	15%	438
13	ВТК	NM_000061.2	c.1186delG	p.Glu396LysfsTer7	76%	1890
4	CARD11	NM_032415.4	c.758T>C	p.Leu253Pro	32%	6990
4	CD79A	NM_001783.3	c.670G>T	p.Glu224Ter	40%	2292
17	CIITA	NM_000246.3	c.1504G>A	p.Glu502Lys	47%	1778
9	CIITA	NM_000246.3	c.3311C>T	p.Thr1104Met	38%	4626
19	CIITA	NM_000246.3	c.874C>T	p.Pro292Ser	41%	3378
20	CIITA	NM_000246.3	c.1136A>C	p.Glu379Ala	20%	2326

Table S2: List of variants detected in DHL/THL patients (VAF: Variant allele frequency)

Patient #	Gene	Transcript	cDNA alteration	protein alteration	VAF	Total depth
1	CREBBP	NM_004380.2	c.3780-2A>C	splice site	49%	3252
2	CREBBP	NM_004380.2	c.1941+2T>G	splice site		2678
3	CREBBP	NM_004380.2	c.3195T>G	p.Ser1065Arg		4092
3	CREBBP	NM_004380.2	c.3710G>A	p.Cys1237Tyr	46%	6478
4	CREBBP	NM_004380.2	c.904_905delAG	p.Ser302HisfsTer47	19%	4126
5	CREBBP	NM_004380.2	c.1571dupT	p.Asn526LysfsTer2	43%	3692
5	CREBBP	NM_004380.2	c.4559A>T	p.Lys1520Met	46%	1898
7	CREBBP	NM_004380.2	c.4709C>T	p.Ala1570Val	11%	1512
8	CREBBP	NM_004380.2	c.4336C>T	p.Arg1446Cys	46%	5374
8	CREBBP	NM_004380.2	c.3375T>G	p.Tyr1125Ter	48%	4888
8	CREBBP	NM_004380.2	c.3377T>A	p.Phe1126Tyr	48%	4888
9	CREBBP	NM_004380.2	c.1941+1G>T	splice site	61%	9558
9	CREBBP	NM_004380.2	c.1934A>G	p.Asn645Ser	71%	8104
9	CREBBP	NM_004380.2	c.1921T>A	p.Tyr641Asn	71%	8102
10	CREBBP	NM_004380.2	c.4303G>T	p.Asp1435Tyr	46%	4206
11	CREBBP	NM_004380.2	c.712G>C	p.Val238Leu	27%	6156
11	CREBBP	NM_004380.2	c.4628A>T	p.Asp1543Val	61%	2544
11	CREBBP	NM_004380.2	c.85+2T>G	splice site	39%	528
12	CREBBP	NM_004380.2	c.4395-2A>C	splice site	31%	4638
13	CREBBP	NM_004380.2	c.3780-1G>A	splice site	37%	6232
13	CREBBP	NM_004380.2	c.5039_5041delCCT	p.Ser1680del	41%	1494
13	CREBBP	NM_004380.2	c.458C>T	p.Pro153Leu	48%	3638
14	CREBBP	NM_004380.2	c.3609+2T>C	splice site	53%	6904
18	CREBBP	NM_004380.2	c.4445A>G	p.Tyr1482Cys	83%	2058
18	CREBBP	NM_004380.2	c.4447A>T	p.lle1483Phe	72%	908
19	CREBBP	NM_004380.2	c.4427C>T	p.Pro1476Leu	80%	5518
20	CREBBP	NM_004380.2	c.5666C>T	p.Pro1889Leu	69%	852
20	CREBBP	NM_004380.2	c.4685A>G	p.Glu1562Gly	21%	2236
6	DUSP2	NM_004418.3	c.388+5G>C	splice site	35%	2190
6	DUSP2	NM_004418.3	c.389-7C>T	splice site	39%	2190
11	DUSP2	NM_004418.3	c.388+5_388+6delGCinsTG	splice site	50%	1916
20	DUSP2	NM_004418.3	c.532C>T	p.Pro178Ser	16%	1484
8	EP300	NM_001429.3	c.6687T>G	p.His2229Gln	9%	1112
18	EP300	NM_001429.3	c.2773C>A	p.Pro925Thr	48%	1624
19	EP300	NM_001429.3	c.6687T>G	p.His2229Gln	10%	1002
1	EZH2	NM_004456.4	c.1937A>T	p.Tyr646Phe	15%	6954
2	EZH2	NM_004456.4	c.1936T>A	p.Tyr646Asn	39%	5320
5	EZH2	NM_004456.4	c.1937A>T	p.Tyr646Phe	30%	8736
10	EZH2	NM_004456.4	c.1852-5T>C	splice site	48%	7402
12	EZH2	NM_004456.4	c.1937A>T	p.Tyr646Phe	29%	6904
13	EZH2	NM_004456.4	c.1937A>T	p.Tyr646Phe	36%	5952
14	EZH2	NM_004456.4	c.1937A>T	p.Tyr646Phe	49%	8032
15	EZH2	NM_004456.4	c.2075C>T	p.Ala692Val	25%	3928
2	FOXO1	NM_002015.3	c.70A>G	p.Thr24Ala	80%	432
3	FOXO1	NM_002015.3	c.55C>T	p.Arg19Trp	26%	712

Patient #	Gene	Transcript	cDNA alteration	protein alteration		Total depth
4	FOXO1	NM_002015.3	c.56G>A	p.Arg19Gln	20%	978
7	FOXO1	NM_002015.3	c.1571A>T	p.His524Leu	6%	5106
13	FOXO1	NM_002015.3	c.62G>C	p.Arg21Pro		600
19	FOXO1	NM_002015.3	c.70A>G	p.Thr24Ala	38%	902
5	GNA13	NM_006572.4	c.661G>C	p.Val221Leu	11%	5824
5	GNA13	NM_006572.4	c.203T>A	p.Met68Lys	78%	1086
6	GNA13	NM_006572.4	c.143T>C	p.Leu48Pro	35%	3540
6	GNA13	NM_006572.4	c.91_96dupTCCAAG	p.Ser31_Lys32dup	32%	4562
12	GNA13	NM_006572.4	c.82C>T	p.Gln28Ter	34%	1302
5	HIST1H1C	NM_005319.3	c.203C>T	p.Ala68Val	85%	2440
6	HIST1H1C	NM_005319.3	c.565G>A	p.Ala189Thr	37%	7602
6	HIST1H1C	NM_005319.3	c.139G>T	p.Ala47Ser	62%	2950
16	ID3	NM_002167.4	c.167C>T	p.Pro56Leu	43%	2970
2	IGLL5	NM_001178126.1	c.174C>A	p.Ser58Arg	79%	690
2	IGLL5	NM_001178126.1	c.167T>C	p.Val56Ala	78%	690
4	IGLL5	NM_001178126.1	c.206G>C	p.Arg69Thr	7%	508
4	IGLL5	NM_001178126.1	c.46C>G	p.Leu16Val	33%	486
4	IGLL5	NM_001178126.1	c.93_95delGGCinsAAA	p.Ala32Asn	32%	486
6	IGLL5	NM_001178126.1	c.206_206+1delGGinsAA	splice site	64%	450
16	IGLL5	NM_001178126.1	c.125T>A	p.Met42Lys	82%	588
17	IGLL5	NM_001178126.1	c.176G>C	p.Ser59Thr	54%	1512
17	IGLL5	NM_001178126.1	c.169G>A	p.Gly57Arg	38%	1512
17	IGLL5	NM_001178126.1	c.206+4A>C	splice site	38%	1508
12	IGLL5	NM_001178126.1	c.125T>G	p.Met42Arg	26%	1134
12	IGLL5	NM_001178126.1	c.176_177delGCinsCT	p.Ser59Thr	30%	1134
13	IGLL5	NM_001178126.1	c.195_196delCCinsTG	p.Leu66Val	65%	728
13	IGLL5	NM_001178126.1	c.196C>G	p.Leu66Val	51%	728
14	IGLL5	NM_001178126.1	c.166G>A	p.Val56lle	49%	1754
4	ΙΤΡΚΒ	NM_002221.3	c.1229G>A	p.Ser410Asn	15%	1368
6	ΙΤΡΚΒ	NM_002221.3	c.353C>T	p.Thr118lle	45%	1380
5	KMT2A	NM_001197104.1	c.11620C>T	p.Arg3874Trp	35%	2520
2	KMT2D	NM_003482.3	c.16048_16051delAAAC	p.Lys5350GlyfsTer5	58%	4360
2	KMT2D	NM_003482.3	c.6595delT	p.Tyr2199llefsTer65	33%	2706
2	KMT2D	NM_003482.3	c.6594delC	p.Tyr2199llefsTer65	12%	4760
4	KMT2D	NM_003482.3	c.11649_11650delCA	p.His3883GInfsTer128	33%	2462
5	KMT2D	NM_003482.3	c.5279A>G	p.Lys1760Arg	47%	2394
8	KMT2D	NM_003482.3	c.2772_2774delCTT	p.Leu925del	46%	3076
17	KMT2D	NM_003482.3	c.9884dupT	p.Met3295IlefsTer6	71%	11666
10	KMT2D	NM_003482.3	c.16455delC	p.Val5486Ter	48%	3874
11	KMT2D	NM_003482.3	c.7933C>T	p.Arg2645Ter	45%	4038
13	KMT2D	NM_003482.3	c.13040_13041delAG	p.Gln4347ArgfsTer24	25%	1972
14	KMT2D	NM_003482.3	c.2173dupC	p.Leu725ProfsTer6	46%	4138
15	KMT2D	NM_003482.3	c.5994T>A	p.Tyr1998Ter	28%	1318
15	KMT2D	NM_003482.3	c.10378C>T	p.Gln3460Ter	49%	5750
18	KMT2D	NM_003482.3	c.8727_8730delAAGT	p.Ser2910ArgfsTer32	74%	680

Patient #	Gene	Transcript	cDNA alteration	protein alteration	VAF	Total depth
20	KMT2D	NM_003482.3	c.267delT	p.Phe89LeufsTer41	20%	3720
20	KMT2D	NM_003482.3	c.11260C>T	p.Gln3754Ter	37%	476
5	MEF2B	NM_001145785.1	c.10A>G	p.Lys4Glu		7386
6	MEF2B	NM_001145785.1	c.1105T>G	c.1105T>G p.Ter369GluextTer68 39		1036
10	MEF2B	NM_001145785.1	c.205T>C	p.Tyr69His	48%	2944
15	MEF2B	NM_001145785.1	c.54+1G>T	splice site	33%	5260
6	MFHAS1	NM_004225.2	c.1232A>G	p.Lys411Arg	37%	1398
6	MFHAS1	NM_004225.2	c.663G>C	p.Glu221Asp	38%	1534
11	MFHAS1	NM_004225.2	c.1688A>G	p.Lys563Arg	62%	4344
1	МҮС	NM_002467.4	c.225_227dupCCT	p.Leu76dup	25%	3136
3	МҮС	NM_002467.4	c.62G>A	p.Ser21Asn	31%	2912
3	МҮС	NM_002467.4	c.490C>G	p.Leu164Val	37%	1128
3	МҮС	NM_002467.4	c.573G>C	p.Leu191Phe	38%	1128
3	МҮС	NM_002467.4	c.232C>G	p.Pro78Ala	29%	572
4	МҮС	NM_002467.4	c.109T>G	p.Tyr37Asp	28%	3086
4	МҮС	NM_002467.4	c.111T>A	p.Tyr37Ter	28%	3086
7	МҮС	NM_002467.4	c.220C>A	p.Pro74Thr	13%	4952
7	МҮС	NM_002467.4	c.485_496delAGAAGCTGGCCT	p.Glu162_Ser166delinsAla	12%	2442
7	МҮС	NM_002467.4	c.686G>A	p.Ser229Asn	11%	5148
16	МҮС	NM_002467.4	c.220C>G	p.Pro74Ala	51%	2936
16	МҮС	NM_002467.4	c.386G>C	p.Ser129Thr	54%	4224
9	МҮС	NM_002467.4	c.229T>C	p.Ser77Pro	35%	3544
9	МҮС	NM_002467.4	c.289C>G	p.Leu97Val	35%	3544
12	МҮС	NM_002467.4	c.16G>C	p.Val6Leu	11%	3310
12	МҮС	NM_002467.4	c.322T>G	p.Phe108Val	27%	3298
12	МҮС	NM_002467.4	c.230C>T	p.Ser77Phe	6%	1600
12	МҮС	NM_002467.4	c.301A>G	p.Asn101Asp	6%	1600
19	МҮС	NM_002467.4	c.220C>A	p.Pro74Thr	33%	9228
20	МҮС	NM_002467.4	c.961C>G	p.Gln321Glu	12%	5092
20	MYD88	NM_002468.4	c.695T>C	p.Met232Thr	21%	832
6	PIM1	NM_001243186.1	c.356-4C>T	splice site	34%	2638
6	PIM1	NM_001243186.1	c.575C>G	p.Ser192Cys	36%	3580
12	PIM1	NM_001243186.1	c.361G>C	p.Glu121Gln	28%	1772
20	PIM1	NM_001243186.1	c.802C>T	p.Leu268Phe	16%	5202
20	PIM1	NM_001243186.1	c.97C>G	p.Gln33Glu	45%	2528
20	PIM1	NM_001243186.1	c.521G>A	p.Gly174Asp	13%	6138
12	PRDM1	NM_001198.3	c.1061G>A	p.Ser354Asn	50%	3260
18	PRDM1	NM_001198.3	c.1571C>T	p.Thr524Met	34%	1458
3	SOCS1	NM_003745.1	c.197G>A	p.Arg66His	22%	1456
3	SOCS1	NM_003745.1	c.347G>A	p.Ser116Asn	17%	374
4	SOCS1	NM_003745.1	c.456G>C	p.Glu152Asp	18%	998
6	SOCS1	NM_003745.1	c.7G>C	p.Ala3Pro	45%	5272
7	SOCS1	NM_003745.1	c.299C>A	p.Thr100Asn	14%	2716
13	SOCS1	NM_003745.1	c.157A>C	p.Thr53Pro	23%	538
13	SOCS1	NM_003745.1	c.164delT	p.Phe55SerfsTer30	23%	540

Patient #	Gene	Transcript	cDNA alteration	protein alteration	VAF	Total depth
20	SOCS1	NM_003745.1	c.296G>C	p.Gly99Ala	17%	928
13	STAT6	NM_003153.4	c.1256A>C	p.Asp419Ala	30%	7594
10	TCF3	NM_001136139.2	c.1653T>A	p.Asn551Lys	47%	3424
15	TCF3	NM_001136139.2	c.22G>T	p.Ala8Ser	45%	1360
8	TNFAIP3	NM_006290.3	c.1939A>C	p.Thr647Pro	46%	4670
11	TNFAIP3	NM_006290.3	c.1681C>T	p.Gln561Ter	90%	700
2	TNFRSF14	NM_003820.2	c.263A>T	p.Asn88lle	42%	1550
9	TNFRSF14	NM_003820.2	c.269T>C	p.Leu90Pro	27%	1806
9	TNFRSF14	NM_003820.2	c.1A>G	p.Met1?	32%	2598
11	TNFRSF14	NM_003820.2	c.219_220delAG	p.Cys75Ter	90%	888
14	TNFRSF14	NM_003820.2	c.460+1G>T	splice site	45%	3464
14	TNFRSF14	NM_003820.2	c.467_470delAGAG	p.Glu156ValfsTer33	50%	4728
7	TP53	NM_000546.5	c.261_270delAGCCCCCTCC	p.Ala88GlyfsTer32	23%	990
7	TP53	NM_000546.5	c.773A>T	p.Glu258Val	11%	5186
7	TP53	NM_000546.5	c.715A>G	p.Asn239Asp	10%	5948
8	TP53	NM_000546.5	c.712T>A	p.Cys238Ser	81%	4790
17	TP53	NM_000546.5	c.273G>A	p.Trp91Ter	93%	472
11	TP53	NM_000546.5	c.536A>C	p.His179Pro	92%	744
19	TP53	NM_000546.5	c.470T>A	p.Val157Asp	72%	1668

Table	<u>e S3</u> : Validation	of the Lymphop	anel. (VAF: Va	riant allele frequency)

					TSCA run 1				Capture	
Sample #	Gene	cDNA alteration	Protein alteration		Depth	Depth		Depth	Depth	Captare
				VAF	(Library A)	(Library B)	VAF	(Library A)	(Library B)	VAF
	BCL2	c.585+4G>A		31%	1832	384	28%	1816	343	35%
	CREBBP	c.3195T>G	p.Ser1065Arg	24%	1426	2666	21%	1970	2436	27%
	CREBBP	c.3710G>A	p.Cys1237Tyr	46%	3634	2844	44%	3008	2830	45%
	FOXO1	c.55C>T	p.Arg19Trp	26%	558	154	20%	494	79	27%
2	МҮС	c.62G>A	p.Ser21Asn	31%	1328	1584	29%	1065	893	38%
3	MYC	c.490C>G	p.Leu164Val	37%	574	554	28%	650	338	34%
	МҮС	c.573G>C	p.Leu191Phe	38%	574	554	28%	649	338	27%
	МҮС	c.232C>G	p.Pro78Ala	29%	64	508	30%	246	861	36%
	SOCS1	c.197G>A	p.Arg66His	22%	592	864	22%	699	392	24%
	SOCS1	c.347G>A	p.Ser116Asn	17%	246	128	29%	316	110	31%
	BCL2	c.386G>A	p.Arg129His	19%	774	422	19%	648	930	21%
	BCL2	c.261C>G	p.Ser87Arg	31%	574	230	22%	300	395	22%
	CARD11	c.758T>C	p.Leu253Pro	32%	3912	3078	31%	1788	2092	33%
	CD79A	c.670G>T	p.Glu224Ter	40%	1622	670	40%	1957	1402	41%
	CREBBP	c.904_905delAG	p.Ser302HisfsTer47	19%	1906	2220	23%	1071	1483	19%
	FOXO1	c.56G>A	p.Arg19Gln	20%	844	134	15%	313	127	25%
4	IGLL5	c.206G>C	p.Arg69Thr	7%	258	250	13%	278	267	28%
	IGLL5	c.46C>G	p.Leu16Val	33%	446	40	34%	244	265	30%
	IGLL5	c.93_95delGGCinsAAA	p.Ala32Asn	32%	446	40	33%	244	265	23%
	ІТРКВ	c.1229G>A	p.Ser410Asn	15%	1220	148	18%	798	413	22%
	KMT2D	c.11649_11650delCA	p.His3883GInfsTer128	33%	1718	744	31%	1298	1564	31%
	MYC	c.109T>G	p.Tyr37Asp	28%	1698	1388	31%	700	1090	24%
	MYC	c.111T>A	p.Tyr37Ter	28%	1698	1388	31%	700	1090	24%
	SOCS1	c.456G>C	p.Glu152Asp	18%	738	260	20%	362	303	25%
	CREBBP	c.1571dupT	p.Asn526LysfsTer2	43%	1648	2044	44%	852	1468	44%
	CREBBP	c.4559A>T	p.Lys1520Met	46%	402	1496	37%	1312	929	37%
	EZH2	c.1937A>T	p.Tyr646Phe	30%	5458	3278	26%	4194	1874	22%
-	GNA13	c.661G>C	p.Val221Leu	11%	1874	3950	12%	2903	3125	13%
5	GNA13	c.2031>A	p.Met68Lys	/8%	826	260	75%	569	435	/1%
	HISTIHIC	c.203C>1	p.Ala68Val	85%	910	1530	72%	359	981	53%
	KIVITZA	C.11620C>1	p.Arg38/41rp	35%	824	1096	34%	1034	908	43%
	KIVITZD MEE2D	C.5279A>G	p.Lys1760Arg	4/%	1470	918	45%	952	1590	51%
	IVIEF2D	C.10A>G	p.Lys4Glu	41%	1272	2032	43%	1002	1569	4470
	BCL2 BCL2	c 221C>A	p.Gly141Glu	40% 50%	564	242	4470	206	264	43%
	BCL2	c 179C>T	p.11174A31	51%	564	342	4776	200	364	45%
	BCL2	c 175C>T	n Pro59Ser	51%	564	342	48%	200	364	46%
	DUSP2	c 388+5G>C	splice site	35%	1912	278	36%	371	960	40%
	DUSP2	c.389-7C>T	splice site	39%	1910	280	35%	371	961	37%
	GNA13	c.143T>C	p.Leu48Pro	35%	1810	1730	33%	1033	929	35%
	GNA13	c.91 96dupTCCAAG	p.Ser31 Lys32dup	32%	2404	2158	31%	1465	1173	27%
	HIST1H1C	 c.565G>A	p.Ala189Thr	37%	3802	3800	36%	2671	2607	34%
6	HIST1H1C	c.139G>T	p.Ala47Ser	62%	1140	1810	47%	1192	445	35%
	IGLL5	c.206_206+1delGGinsAA	splice site	64%	298	152	70%	106	372	72%
	ІТРКВ	c.353C>T	p.Thr118lle	45%	194	1186	41%	609	316	32%
	MEF2B	c.1105T>G	p.Ter369GluextTer68	39%	84	952	23%	144	31	34%
	MFHAS1	c.1232A>G	p.Lys411Arg	37%	858	540	41%	861	584	38%
	MFHAS1	c.663G>C	p.Glu221Asp	38%	614	920	40%	692	707	43%
	PIM1	c.356-4C>T	splice site	34%	1078	1560	36%	1038	496	34%
	PIM1	c.575C>G	p.Ser192Cys	36%	1682	1898	42%	903	959	38%
	SOCS1	c.7G>C	p.Ala3Pro	45%	3410	1862	42%	930	1129	42%
	BCL2	c.181G>A	p.Ala61Thr	19%	770	454	12%	463	484	15%
	BCL2	c.256C>T	p.Leu86Phe	18%	770	454	12%	463	485	14%
	BCL2	c.203G>A	p.Arg68Lys	18%	770	454	12%	463	483	15%
	BCL2	c.372C>A	p.Phe124Leu	17%	1514	928	8%	875	907	9%
	BCL2	c.386_387delGCinsAG	p.Arg129Gln	11%	1516	928	5%	876	907	5%
	BCL2	c.386G>A	p.Arg129His	6%	1510	928	6%	877	907	8%
	CREBBP	c.4709C>T	p.Ala1570Val	11%	1128	384	12%	1837	594	14%
7	FOXO1	c.1571A>T	p.His524Leu	6%	2490	2616	7%	1506	1097	9%
	MYC	c.220C>A	p.Pro74Thr	13%	2748	2204	9%	1423	2678	12%
	MYC	c.485_496delAGAAGCTGGCCT	p.Glu162_Ser166delinsAla	12%	1206	1236	12%	683	643	9%
	MYC	c.686G>A	p.Ser229Asn	11%	414	4734	11%	822	1860	11%
	SOCS1	c.299C>A	p.Thr100Asn	14%	1258	1458	11%	674	674	14%
	TP53	c.261_270deIAGCCCCCTCC	p.Ala88GlytsTer32	23%	250	740	15%	987	865	11%
	1253	c.//3A>T	p.Glu258Val	11%	2598	2588	10%	1658	1214	12%
1	1P53	c./15A>G	p.Asn239Asp	10%	1256	4692	11%	1878	2026	17%

	p value	-00 Q	<u,uul< th=""><th>100.01</th><th></th><th>500</th><th></th><th>000</th><th>TODÍOS</th><th>200 Q.</th><th></th><th colspan="2"><0,01</th><th colspan="2"><0,001</th><th colspan="2"><0,05</th></u,uul<>	100.01		500		000	TODÍOS	200 Q.		<0,01		<0,001		<0,05	
	DHL/THL (n=20)	16	4	12	8	12	8	6	11	8	12	8	20	9	14	9	14
	Total	385	2315	330	2294	669	1909	139	2454	204	2493	34	300	127	2269	260	2222
	Karube et al, 2017 (n=150)	31	119	2	148	43	107	3	147	17	133	NA	NA	16	134	15	135
	Juskevicius et al, 2017 (n=76)	12	64	4	72	26	50	5	71	я	73	NA	NA	3	73	21	55
	Hung et al, 2018 (n=76)	10	99	AN	NA	17	59	AN	NA	14	62	AN	NA	9	0/	٧N	NA
	Dubois et al, 2016 (n=215)	41	174	22	193	88	127	14	201	19	196	NA	NA	15	200	32	183
	Schmitz et al, 2018 (n=574)	92	482	57	517	178	396	34	540	46	528	AN	NA	43	531	75	499
NOS	Chapuy et al, 2017(n=304)	52	252	52	252	76	228	19	285	21	283	30	274	4	300	16	288
DLBCL	Reddy et al, 2017 (n=1001)	110	891	160	841	225	776	50	951	09	141	AN	NA	40	961	06	911
	Zhang et al, 2013 (n=73)	3	20	3	70	AN	NA	1	72	1	72	AN	NA	AN	NA	8	70
	Pasqualucci et al, 2011 (n=variable)	20	91	10	101	21	71	7	104	9	101	NA	NA	NA	NA	NA	NA
	Morin et al, 2013 (n=40)	3	37	8	32	6	31	2	38	6	31	NA	NA	NA	NA	ъ	35
	de Miranda et al, 2014 (n=31)	3	28	1	30	2	29	NA	NA	1	30	4	26	NA	NA	NA	NA
	Lohr et al, 2012 (n=49)	8	41	11	38	14	35	4	45	7	42	NA	NA	NA	NA	æ	46
		mutated	unmutated	mutated	unmutated	mutated	unmutated	mutated	unmutated	mutated	unmutated	mutated	unmutated	mutated	unmutated	mutated	unmutated
	Genes		СКЕВВР	2120	פררק	UCT1 AV			ואו רר	2021	בבחב		כווטו	10201	LUXUI	1000	76705

<u>Table S4:</u> Comparisons of observed mutation frequencies in DHL/THL and those observed in DLBCL NOS in literature (*NA: not available*)

<u>Table S5</u>: Comparisons of observed mutation frequencies in GCB-DHL/THL and those observed in GCB-DLBCL in the literature (*NA: not available*)

				GC	B -DLBCL							
Genes		Zhang et al, 2013 (n=17)	Reddy et al, 2017 (n=331)	Schmitz et al, 2018 (n=164)	Dubois et al, 2016 (n=83)	Hung et al, 2018 (n=33)	Juskevicius et al, 2017 (n=32)	Karube et al, 2017 (n=60)	Total GCB-DLBCL	GCB- DHL/THL (n=18)	p value	
CRERRR	mutated	1	56	43	26	5	8	18	157	16	<0.001	
CREDDP	unmutated	16	275	121	57	28	24	42	563	2	N0.001	
DCI 2	mutated	2	80	34	20	NA	3	2	141	12	<0.001	
BCLZ	unmutated	15	251	130	63	NA	29	58	546	6	<0.001	
	mutated	NA	93	52	38	8	11	23	225	10	<0.05	
KIVITZD	unmutated	NA	238	112	45	25	21	37	478	8		
MAYC	mutated	NA	21	11	8	NA	2	2	44	9		
IVIYC	unmutated	NA	310	153	75	NA	30	58	626	9	<0.001	
57112	mutated	1	41	36	15	11	8	12	124	7	-0.05	
EZHZ	unmutated	16	290	128	68	22	24	48	596	11	<0.05	
50701	mutated	NA	16	20	10	4	1	11	62	6	-0.01	
FUXUI	unmutated	NA	315	144	73	29	31	49	641	12	<0.01	
COCC1	mutated	2	46	38	13	NA	9	12	120	6	0.44	
30031	unmutated	15	285	126	70	NA	23	48	567	12	0.11	

References

- 1. Laurent C, Guérin M, Frenois F-X, et al. Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes. Hum Pathol 2013;44(8):1544–1555.
- 2. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004;103(1):275–282.
- 3. Vendrell JA, Grand D, Rouquette I, et al. High-throughput detection of clinically targetable alterations using next-generation sequencing. Oncotarget 2017;8(25):40345–40358.
- 4. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci 2012;109(10):3879–3884.
- 5. Morin RD, Mungall K, Pleasance E, et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 2013;122(7):1256–1265.
- 6. Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011;43(9):830–837.
- de Miranda NFCC, Georgiou K, Chen L, et al. Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients. Blood 2014;124(16):2544–2553.
- 8. Zhang J, Grubor V, Love CL, et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2013;110(4):1398–1403.
- 9. Dubois S, Viailly P-J, Mareschal S, et al. Next-Generation Sequencing in Diffuse Large B-Cell Lymphoma Highlights Molecular Divergence and Therapeutic Opportunities: a LYSA Study. Clin Cancer Res Off J Am Assoc Cancer Res 2016;22(12):2919–2928.
- Juskevicius D, Jucker D, Klingbiel D, Mamot C, Dirnhofer S, Tzankov A. Mutations of CREBBP and SOCS1 are independent prognostic factors in diffuse large B cell lymphoma: mutational analysis of the SAKK 38/07 prospective clinical trial cohort. J Hematol Oncol 2017;10(1):70.
- 11. Mareschal S, Dubois S, Viailly P-J, et al. Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2016;55(3):251–267.
- 12. Morin RD, Assouline S, Alcaide M, et al. Genetic Landscapes of Relapsed and Refractory Diffuse Large B-Cell Lymphomas. Clin Cancer Res 2016;22(9):2290–2300.
- 13. Hung SS, Meissner B, Chavez EA, et al. Assessment of Capture and Amplicon-Based Approaches for the Development of a Targeted Next-Generation Sequencing Pipeline to Personalize Lymphoma Management. J Mol Diagn 2018;20(2):203–214.

- 14. Karube K, Enjuanes A, Dlouhy I, et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets. Leukemia 2018;32(3):675–684.
- 15. Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell 2017;171(2):481-494.e15.
- 16. Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 2018;24(5):679–690.
- Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med 2018;378(15):1396–1407.