New insight into antiphospholipid syndrome: antibodies to β_2 glycoprotein I-domain 5 fail to induce thrombi in rats

Paolo Durigutto,¹ Claudia Grossi,² Maria Orietta Borghi,^{2,3} Paolo Macor,¹ Francesca Pregnolato,² Elena Raschi,² Michael P. Myers,⁴ Philip G. de Groot,⁵ Pier Luigi Meroni² and Francesco Tedesco²

¹Department of Life Sciences, University of Trieste, Italy; ²Istituto Auxologico Italiano, IRCCS, Laboratory of Immuno-Rheumatology, Milan, Italy; ³Department of Clinical Sciences and Community Health, University of Milan, Italy; ⁴International Centre for Genetic Engineering and Biotechnology, Trieste, Italy and ⁵Department of Clinical Chemistry and Haematology, University of Utrecht, University Medical Center Utrecht, the Netherlands

PD and CG contributed equally to this work. PLM and FT contributed equally to this work.

©2019 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2018.198119

Received: May 22, 2018. Accepted: November 14, 2018. Pre-published: November 15, 2018. Correspondence: *FRANCESCO TEDESCO* tedesco@units.it

Supplementary Methods

Animal models

An *in vivo* model of antibody-induced thrombus formation was established in male Wistar rats (270-300 g) (Envigo, S. Pietro al Natisone, Italy) and kept under standard conditions in the Animal House of the University of Trieste, Italy as previously reported in details.¹ Briefly, the animals received an intraperitoneal injection of lipopolysaccharide (LPS) from Escherichia coli O55:B5 (2.5 mg/kg body weight) (Sigma-Aldrich) 4 hours before general anesthesia. After infusion of Rhodamine 6G (Sigma-Aldrich) into the femoral vein, serum IgG (10 mg/rat) from patients and controls were slowly administered into the carotid artery. For some experiments the protocol was slightly changed and the animals received intraperitoneal injection of IgG 15 hours before general anesthesia followed by the injection of LPS by the same route. Clot formation and partial or complete occlusion of blood vessels were monitored by intravital microscopy and analyzed in at least 5 microvascular areas. The microvasculature was examined using a BX50WI microscope (Olympus, Center Valley, USA), equipped with CCD camera model SensiCam and SensiCam digital converter (PCO). The in vivo procedures were performed in compliance with the guidelines of European (86/609/EEC) and Italian (D.L.116/92) laws and were approved by the Italian Ministry of University and Research and the Administration of the University Animal House. This study was conducted in accordance with the Declaration of Helsinki.

Antibody binding assays

The interaction of IgG with phospholipid-bound β_2 GPI was evaluated by coating the wells of 96well polystyrene plates (Polysorp Immunoplate, Nalge Nunc International) with cardiolipin (50 µg/ml) (Sigma-Aldrich) overnight at 4°C. After blocking the free binding sites with 1% ultrapure BSA (Sigma-Aldrich) in PBS (PBS/BSA), increasing concentrations of purified β_2 GPI (1,5,75 µg/ml) were added and left to incubate for 2 hours at room temperature. Free β_2 GPI was removed by washing with the blocking buffer and phospholipid-bound β_2 GPI was allowed to react with IgG (50 µg/ml) from patients and controls for additional 2 hours at room temperature. Bound antibodies were detected with alkaline phosphatase-conjugated goat anti-human IgG (Sigma-Aldrich).

The interaction of IgG with soluble β_2 GPI was evaluated by incubating patients' and controls' IgG (50 µg/ml) with increasing concentrations (50,100,200 µg/ml) of human purified β_2 GPI or BSA as unrelated antigen for 1 hour at 37°C followed by overnight incubation at 4°C in a tube rotator. The samples were centrifuged at 3,000 g for 5 min at room temperature and the residual un-complexed

antibodies were tested using γ -irradiated polystyrene plates (Combiplate EB, Labsystems) directly coated with purified human β_2 GPI (10 µg/ml) as previously described.²

Sample ID	Age /sex	Diagnosis	aCL IgG, GPL [*]	$a\beta_2 GPI$ IgG, OD [†]	aD1 lgG AU [‡]	aD4,5 IgG AU [‡]	LA	AT	VT	PM
P1	35/F	APS non- criteria	0	1.45	9	59	neg	No	No	2EM
P2	56/F	aPL carrier	20	1.10	13	39	neg	No	No	No
Р3	29/F	APS non- criteria	4	0.93	24	49	neg	No	No	2EM
P4	36/F	APS non- criteria	3	0.98	15	63	neg	No	No	FGR
Р5	60/M	APS non- criteria	10	0.76	6	44	neg	No	SVT	NA
P6	34/F	PAPS	88	1.73	69	11	pos	Yes	No	No
P7	51/F	PAPS	155	1.56	78	13	pos	Yes	No	Yes
P8	34/F	SAPS	67	0.62	104	10	pos	No	Yes	No
Р9	46/M	PAPS	131	1.68	60	7	pos	Yes	Yes	NA
P10	46/F	PAPS	181	1.72	66	15	pos	No	No	Yes
NHS1	39/F	healthy ctrl	6	0.00	0	7	neg	No	No	No
NHS2	27/F	healthy ctrl	5	0.04	4	6	neg	No	No	No
NHS3	43/F	healthy ctrl	8	0.03	13	11	neg	No	No	No
NHS4	42/F	healthy ctrl	10	0.00	16	18	neg	No	No	No
NHS5	34/F	healthy ctrl	6	0.00	0	6	neg	No	No	No

Supplementary Table 1. Clinical and laboratory characteristics of the patients and controls

aCL indicates anti-cardiolipin antibodies; $a\beta_2$ GPI, anti- β_2 glycoprotein I antibodies; LA, lupus anticoagulant; AT, arterial thrombosis; VT, venous thrombosis; PM, pregnancy morbidity, as defined by Miyakis et al¹; EM, early miscarriages; FGR, fetal growth retardation; SVT, superficial venous thrombosis; PAPS, primary antiphospholipid syndrome; aPL carrier, antiphospholipid-positive asymptomatic subject; SAPS, secondary antiphospholipid syndrome; ctrl, control; D4/5, β_2 GPI domains 4/5; D1, β_2 GPI domain 1; and NA, not applicable. ^{*}aCL IgG cut-off 20 GPL; [†] $a\beta_2$ GPI IgG cut-off 0.170 OD; ^{*}Anti- β_2 GPI D4/5 cut-off 19 AU; and anti- β_2 GPI D1 cut-off 25 AU

Supplementary Figure 1. Sequences of peptides obtained by trypsin degradation of recombinant domains 4 and 5. The amino acid sequences of domains 4 and 5 are underlined and included in the published sequence of β_2 GPI.³

β2glycoprotein I precursor

1 mispvlilfs sflchvaiag rtcpkpddlp fstvvplktf yepgeeitys ckpgyvsrgg 61 mrkficpltg lwpintlket prvcpfagil engavryttf eypntisfse ntgfylngad 121 saketeegkw spelpvcapi icpppsiptf atlrvykpsa gnnslyrdta vfeelpqham 181 fgndtitett hgnwtklpee revk*cpfpsr pdngfvnypa kptlyykdka tfgchdgysl* 241 dgpeeiectk lgnwsampse kasekvpvkk atvvyqgerv kiqekfkngm lhgdkvsffc 301 knkekkesyt edaqcidgti evpkcfkehs slafwktdas dvkpc

Italics: Domain 4

Bold: Domain 5

Underlined: identified sequence

References

1. Fischetti F, Durigutto P, Pellis V, et al. Thrombus formation induced by antibodies to beta2glycoprotein I is complement dependent and requires a priming factor. Blood. 2005;106(7):2340-2346.

2. Andreoli L, Chighizola CB, Nalli C, et al. Clinical characterization of antiphospholipid syndrome by detection of IgG antibodies against beta2-glycoprotein I domain 1 and domain 4/5: ratio of anti-domain 1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(8):2196-2204.

3. Steinkasserer A, Estaller C, Weiss EH, Sim RB, Day AJ. Complete nucleotide and deduced amino acid sequence of human beta 2-glycoprotein I. Biochem J. 1991;277 (Pt 2):387-391.