Chronic Myeloid Leukemia
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ABSTRACT

e oncoprotein BCR-ABL1 triggers chronic myeloid leukemia. It is
clear that the disease relies on constitutive BCR-ABL1 kinase activity,
but not all the interactors and regulators of the oncoprotein are

known. We describe and validate a Drosophila leukemia model based on
inducible human BCR-ABL1 expression controlled by tissue-specific pro-
moters. The model was conceived to be a versatile tool for performing
genetic screens. BCR-ABL1 expression in the developing eye interferes with
ommatidia differentiation and expression in the hematopoietic precursors
increases the number of circulating blood cells. We show that BCR-ABL1
interferes with the pathway of endogenous dAb/ with which it shares the
target protein Ena. Loss of function of ena or Dab, an upstream regulator of
dAbl, respectively suppresses or enhances both the BCR-ABL1-dependent
phenotypes. Importantly, in patients with leukemia decreased human Dab1
and Dab2 expression correlates with more severe disease and Dab1 expres-
sion reduces the proliferation of leukemia cells. Globally, these observations
validate our Drosophila model, which promises to be an excellent system for
performing unbiased genetic screens aimed at identifying new BCR-ABL1
interactors and regulators in order to better elucidate the mechanism of
leukemia onset and progression.

Introduction

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder asso-
ciated with a reciprocal translocation between chromosomes 9 and 22. This
process leads to the fusion of the Abelson (ABL1) tyrosine kinase gene with the
breakpoint cluster region (BCR) sequences generating a fusion gene encoding the
constitutively active protein tyrosine kinase BCR-ABL1. Due to its high frequen-
cy in CML patients (95%), the translocation is considered the cytogenetic hall-
mark of this disease.”” Although BCR-ABL1 is one of the most studied oncogenic
proteins, some molecular mechanisms leading to cellular transformation are still
partially unknown. In particular, positive or negative regulators of BCR-ABL1
have not been completely identified. The fruitfly, Drosophila melanogaster, repre-
sents a powerful tool for genome-wide genetic analysis and screens, given the
functional conservation and sequence homology between human and Drosophila
genes. Genome-wide approaches may allow identification of genetic pathways
that contribute to disease onset and/or progression without a priori knowledge of
the gene function® The high degree of conservation between human and
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Drosophila Abl (dAbl) proteins and the existence of
Drosophila homologs for many proteins that interact
functionally with BCR-ABL1 in mammals strongly sup-
port the idea that dAbl and presumably BCR-ABL1 signal
transduction pathways could be highly conserved from
fly to human. The dAbl gene is expressed at high levels in
differentiating neurons and plays an important role in
central nervous system, eye and epithelia development,
mainly  regulating  cytoskeleton  remodeling.**
Interestingly, Forgerty and colleagues demonstrated that
the neural expression of a chimeric BCR-ABL protein car-
rying the human BCR fused to dAbl is able to rescue the
dAbl mutant phenotype, suggesting that the chimeric
BCR-ABL protein can effectively compensate for lack of
dAbl” To further identify genes and pathways involved
in the onset and progression of CML, we developed and
validated a genetic model based on transgenic flies that
drive inducible human BCR-ABL1 expression under the
control of tissue- and stage-specific promoters, providing
both an excellent and powerful model to identify novel
functional interactors.

Methods

Generation of BCR-ABL1 transgenic flies

The BCR-ABL1 coding sequence was amplified by poly-
merase chain reactions and cloned into the P-element expres-
sion vector pKS69. BCR-ABL1 kinase-dead (BCR-ABL1*") was
obtained  through site-directed mutagenesis (Online
Supplementary Data). Plasmids were prepared using Qiafilter™
Plasmid Maxi Kit (Qiagen, Venlo, the Netherlands) and injected
in Drosophila embryos (The BestGene, Inc, Chino Hills, CA,
USA).

Drosophila stocks

Fly stocks were obtained from Bloomington Drosophila Stock
Center (Department of Biology, Indiana University,
Bloomington, IN, USA). RNA interference (RNAI) lines were
obtained from the Vienna Drosophila RNAi Center (Vienna,
Austria). domelessGal4 and STAT™ flies were kindly provided by
A. Giangrande (IGBMC, Illkirch, France) (Online Supplementary
Data).

Immunoblotting

Adult heads were dissected and homogenized in a protein
extraction buffer. For cell lines, 107 cells were lysed in RIPA
buffer. The following primary antibodies were used: c-Abl (sc-
23), Dabl (sc-271136), p-Tyr (sc-7020), GAPDH (sc-137179)
(Santa Cruz Biotechnology, Santa Cruz, CA, USA), a-tubulin
(CP06; Oncogene Research Products, Merck KGaA, Darmstadt,
Germany) mouse monoclonal antibodies, BCR (sc-20707) rabbit
polyclonal antibody (Santa Cruz Biotechnology) and mouse
5G2 anti-Enabled supernatant (Developmental Studies
Hybridoma Bank - DSHB, University of Iowa, IA, USA). For
immunoprecipitation, 1 mg of total protein extract was incubat-
ed with anti-Enabled supernatant and subsequently with pro-
tein A sepharose (Amersham Bioscience, GE Healthcare,
Waukesha, WI, USA) (Online Supplementary Data).

Fluorescent Immunolabeling
Fly eye primordium

Eye imaginal discs were dissected from third instar larvae,
fixed in 4% paraformaldehyde, permeabilized with 0.3%
Triton X-100, labeled with the rat anti-Elav 7EBA10 supernatant

(DSHB), incubated with a Cy3-conjugated anti-rat secondary
antibody (Jackson Immunoresearch, Newmarket, UK) and
exposed to HOECHST (Sigma-Aldrich Corp., St. Louis, MO,
USA) before mounting in Fluormount-G (Electron Microscopy
Sciences, Hatfield, PA, USA) (Online Supplementary Data).

Primary cells

The protocol was approved by the local ethics committee
(approval n. 212/2015). White blood cells (10°) were obtained
from peripheral blood. Immunofluorescence was performed as
previously described’. Mouse anti-Dab1 and anti-Dab2 primary
antibodies  (sc-271136 and sc-136963, Santa Cruz
Blotechnology) and anti-mouse Alexa Fluor 568 secondary anti-
body (Molecular Probes-Invitrogen, ThermoFisher Scientific,
Waltham, MA, USA) were used (Online Supplementary Data).

Genetic analysis
Eye

Flies carrying gmrGal4 or sevGal4 driver constructs were crossed
to the UAS-BCR-ABL1 transgenic lines. To analyze the phenotype,
flies from a recombinant line carrying both gmrGal4 and UAS-
BCR-ABL1 on the third chromosome (gmrGal4,UAS-BCR-ABL1
4M/TM3) were crossed to lines carrying single gene mutations,
deficiencies or RNAI constructs. Fifteen to 30 F1 flies from three
independent crosses were classified into three phenotypic classes
described in the Results section.

Melanotic nodules

domelessGal4-driven BCR-ABL1 expression was controlled with
the TARGET system™" (Online Supplementary Data). We performed
conditional expression in the medullary zone of the lymph gland
starting at different stages during larvae development by moving
the animals from 18°C to 29°C. Analysis of the melanotic nodule
phenotype and temperature shift experiments were performed as
previously described."

RNA extraction and quantitative analysis

RNA was extracted using standard procedures. Expression
levels of Dab1 and Dab2 were evaluated by real-time poly-
merase chain reaction using specific on-demand kits
(Hs00245445_m1 for ABL4, Hs00221518_m1 for Dab1,
Hs00184598_m1 for Dab2, Applied Biosystems, ThermoFisher
Scientific) according to published methods.”

Results

Expression of human BCR-ABL1 affects eye cell
differentiation

The aim of this work was to set up a CML Drosophila
model based on the expression of a completely human
BCR-ABL1 fusion protein. Available Drosophila genetic
tools allow expression of proteins of interest in develop-
ing eye cells, often inducing viable and visible phenotyp-
ic traits that can be used as a bait in genetic screening.
The Drosophila eye differentiates during the third instar
larva (L3) from the eye imaginal disc, a monolayer
epithelium that is accessible to dissection. We generated
several stable transgenic fly lines to express BCR-ABL1
protein using the yeast Gal4/UAS (Upstream Activating
Sequence) transcriptional regulation system controlled by
a gene promoter active in specific tissues and stages
(Gal4 drivers).” BCR-ABL1 expression was first triggered
with the sevenlessGal4 (sevGal4) construct that drives



high levels of expression in some but not all photorecep-
tors," producing a mild rough eye similar to the one
observed by Fogerty” (Figure 1A-E). This suggests that
BCR-ABL1 interferes with eye development as described
for the human/fly chimera. To drive BCR-ABL1 expres-
sion in more eye cells, we used the glass multimer
reporterGals (gmrGals) driver, active in all cells committed
to differentiation and located posteriorly to the morpho-
genetic furrow,"” the cell indentation crossing the eye pri-

UAS BCR-ABL1
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mordium from posterior to anterior (Figure 1N,O). BCR-
ABL1 expression in these cells produced a severe
“glazed” eye phenotype (Figure 1F-J, Online
Supplementary Figure S1A,B,H,I). The regular structure of
the eye was almost completely lost: ommatidia, the
functional units of the eye, failed to differentiate and
were no longer distinguishable. The eye was smaller,
bar-shaped and misplaced extra sensory bristles
appeared in the dorsal region (Figure 1H-J). Western blot
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Figure 1. BCR-ABL1 expression in the devel-
oping eye cells affects photoreceptor differ-
entiation. (A-E) Adult eyes expressing EGFP
(A) or BCR-ABL1 in four independent trans-
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genic lines, 1M (B), 3M (C), 4M (D), or 7M
(E), in a subset of differentiating photore-
ceptor cells under the control of the
sevenlessGal4 driver construct. (C-E) High
levels of BCR-ABL1 induce a “rough” eye
phenotype due to impairment of cell differ-
entiation. (F-J) Adult eyes expressing EGFP
(F) or BCR-ABL1 (G-J) in all differentiating
eye cells under the control of the gmrGal4
driver construct. (H-J) BCR-ABL1 expressed
at high level in all differentiating eye cells
profoundly disrupts ommatidia development
inducing a “glazed” phenotype, depigment-
ed area and the appearance of extra bristles
(black arrows). (K-M) Quantification of BCR-
ABL1 expression (K,L) and tyrosine-phos-
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adult heads of flies expressing either EGFP
(lane 1) or BCR-ABL1 in independent trans-
genic fly lines (lanes 2-5). The protein
extracts were probed with antibodies raised
against BCR, phosphorylated tyrosine
residues (p-Tyr) or a-tubulin as the loading
control. (N) Schematic of the eye-antenna
imaginal disc from a late third instar larva;

Morphogenetic furrow

the positions of the eye and antenna primor-
dia and of the morphogenetic furrows are
indicated. The eye imaginal disc area poste-
rior to the morphogenetic furrow, made of
cells committed to terminal differentiation,
is indicated in green. The thin black square
indicates the region of interest shown in
panels O-T. (O,P) Eye imaginal disc from wild-
type late third instar larvae expressing EGFP
under the control of the gmrGal4 driver in
cells posterior to the morphogenetic furrow

and expressing the pan-neuronal marker
Elav in cells committed to terminal differen-
tiation. (Q-T) Elav expression in eye imaginal
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discs from third instar larvae of the four
independent transgenic lines that express
BCR-ABL1 under the control of the gmrGal4
driver construct. BCR-ABL1 expression
reduces the number of differentiated pho-
toreceptors as indicated by the decrease of
Elav-expressing cells.




analysis demonstrated that the severity of the phenotype
correlated with the amount and phosphorylation of
BCR-ABL1 protein (Figure 1K-M): indeed the low level of
BCR-ABL1 expression observed in line 1M (Figure 1K-M)
resulted in a very mild phenotype (Figure 1G). To better
understand the origin of the phenotype, we analyzed the
expression of the pan-neuronal and eye photoreceptor
marker Elav'® in eye imaginal discs expressing BCR-
ABL1. The typical Elav* photoreceptor clusters (Figure
1P) were reduced in number and altered in BCR-ABL1-
expressing flies and this correlated with the described
defects of the eye’s ordered structure (Figure 1P-T). To
assess whether the phenotype depends on BCR-ABL1
kinase activity, we generated transgenic flies to express a
kinase-dead mutant BCR-ABL1. gmrGal4-driven expres-
sion of the mutant protein did not affect eye develop-
ment, indicating that the BCR-ABL1 phenotype requires
the enzymatic activity of the oncoprotein (Online
Supplementary Figure S1A-C, H).

Expression of human BCR-ABL1 interferes with eye
development by altering dAbl signaling

To better understand the consequences of BCR-ABL1
overexpression in the eye, we investigated whether the
human oncoprotein could activate the endogenous path-
way regulated by the Drosophila Abl kinase (dAbl). To
quantify the phenotype we classified BCR-ABL1 eyes
(line 4M) into three phenotypic classes. Class 0 repre-
sents the most frequent “glazed” phenotype. Class +1 is
less severe: the eye is bigger and more prominent, and
some ommatidia can be observed. Class -1 is more
severe, being characterized by a less differentiated eye
with evident lack of pigmentation in the most posterior
region (Figure 2A). Interestingly, phenotype expressivity
did not change comparing gmrGal4, UAS-BCR-ABL1 4M
animals with gmrGal4, UAS-BCR-ABL1 4M;UAS-EGFP
(Figure 2B, Online Supplementary Figure S1H,I) indicating
that a single gmrGal4 copy does not express a Gal4 limit-
ing amount that could be titrated by increasing the num-
ber of UAS sequences. Since overexpression of dAbl
(UAS-Ab]) induces a very mild rough eye phenotype
(Online Supplementary Figure S1A,B,G), we investigated
whether it could enhance the BCR-ABL1 phenotype. We
observed a worsening of the phenotype: all of the eyes
belonged to class -1, showing smaller eyes and more evi-
dent loss of pigmentation (Figure 2B, Online
Supplementary Figure S1G,H,N). We then investigated
whether dAbl loss of function (LOF) could suppress the
BCR-ABL1 phenotype. gmrGal4, UAS-BCR-ABL1 4M ani-
mals heterozygous for a dAbl hypomorphic recessive
lethal allele (AbI'/+) showed a very mild phenotypic sup-
pression but were not statistically different from controls
(Figure 2B, Ounline Supplementary Figure S1E,H,L).
However, dAbl downregulation through RNAi (Abl-
RNAi) or expression of a dominant negative kinase-
defective dAbl (UAS-AbLI'™) induced a significant sup-
pression of the BCR-ABL1 phenotype (Figure 2B, Online
Supplementary Figure S1D,EH,IK,M). Interestingly, we
observed that animals expressing either Ab-RNAi or
UAS-Abl or UAS-AbIF' showed a similar mild disorgan-
ization of the ommatidia (Online Supplementary Figure
S1A,B,D,EG) suggesting that the pathway activated by
dAbl is indeed implicated in eye development.
Furthermore, the genetic interactions between BCR-
ABL1 expression and dAbl loss or gain of function sug-
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gest that dAbl, dAbI“’™ and overexpressed BCR-ABL1
could compete for common binding targets. To confirm
that BCR-ABL1 overexpression affects eye development
by altering dAbl signaling cascade, we analyzed whether
BCR-ABL1 could functionally interact with components
of the dAbl pathway. In detail, we focused on four genes
whose LOF mutations genetically interact with a dAbl
mutant phenotype. Mutations of prospero (pros), a tran-
scription factor that regulates neuronal differentiation",
failed axon connections (fax), implicated both in neurogen-
esis and axonogenesis' and Disabled (Dab) that regulates
cellular localization of dAbI”, enhance the mutant dAbI
phenotype. Moreover, enabled (ena) gene mutations sup-
press a dAbl mutant phenotype.” Interestingly, we found
that either a deletion or a mutant allele of pros (Figure 2C,
Ounline Supplementary Figure S2A-C) and fax (Figure 2D,
Online Supplementary Figure S2A,D,E) was able to
enhance the BCR-ABL1 phenotype. Moreover, although
the insertional Dab*™"" allele did not change the BCR-
ABL1 phenotype significantly, a deletion uncovering the
Dab locus enhanced it (Figure 2E, Online Supplementary
Figure S2A,FEG), confirming that BCR-ABL1 expression
alters eye development likely by interacting with compo-
nents of the dAbl pathway.

BCR-ABL1 expression increases phosphorylation
of the dAbl substrate Ena

A genetic screen had previously identified an ena LOF
allele as a suppressor of the recessive lethality due to
dAbl LOF mutations.” Ena is a cytoskeletal regulator that
facilitates actin polymerization.” Its cellular localization
depends on dAbI*” and it is phosphorylated by both
human and Drosophila Abl.”*** Heterozygosis of a LOF
ena allele or of an ena deletion suppressed the BCR-ABL1
phenotype (Figure 2F Ounline Supplementary Figure
S2A,],K). ena silencing with two independent constructs
(ena-RNAJ), induced a size increase and strong decrease
of depigmented tissue in eyes expressing BCR-ABL1
(Figure 3A, Online Supplementary Figure S2A,L,M).
Consistently, the analysis of Elav expression highlighted
a more correct organization of photoreceptor clusters
(Figure 3B-E). Furthermore, we looked at tyrosine-phos-
phorylation of the endogenous Ena. Flies expressing
BCR-ABL1 showed increased levels of Ena tyrosine-
phosphorylation (Figure 3EH) even after Ena immuno-
precipitation (Figure 3G,H) suggesting that Ena might be
phosphorylated by BCR-ABL1. Taken together our data
indicate that alteration of several components of the
dAbl pathway could be important for the mechanism by
which BCR-ABL1 overexpression affects eye develop-
ment, likely phosphorylating conserved targets in fly eye
cells.

A component of the BCR-ABL1-activated pathway
in human leukemia modulates the eye phenotype
in Drosophila

To further assess the effectiveness of the model, we
investigated whether a Drosophila homolog of a gene
known to be involved in BCR-ABL1 signaling in human
leukemia was also able to modulate the BCR-ABL1 phe-
notype. Signal transducer and activator of transcription 5
(STATY?) is a transcription factor activated in response to
cytokines and its role in malignant transformation is well
established.” Several studies showed that BCR-ABL1
induces phosphorylation and constitutive activation of

- 720 haematologica | 2019; 104(4)
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increase of Ena tyrosine-phosphorylation in animals expressing BCR-ABL1. The statistical comparisons in (A) were conducted using the Mann-Whitney test (*P<0.05,
**P<0.01, ***P<0.001).

STATS, hindering apoptosis in leukemic cells.*® The
JAK/STAT pathway is required during Drosophila eye
morphogenesis  and  larval  hematopoiesis.”** ok
Interestingly, loss of STAT92E function (STAT92E%*), the

fly counterpart of STATS, induced strong suppression of

the BCR-ABL1 phenotype (Figure 4, Online Supplementary ~ +1
Figure S3A,B). Flies coexpressing a STAT dominant nega-
tive allele (STAT™) and BCR-ABL1 showed an even
weaker phenotype (Figure 4A, Ounline Supplementary
Figure S3A,C) confirming that STAT is involved in the =1
BCR-ABL1-activated pathway in the Drosophila eye.

STAT

*%

100

21 20

Penetrance of phenotypic classes

The human homologs of Disabled, Dah1 and Dab2, omrGald AM/+  UAS-GEP/+:  Stat92Ee/; UAS-STATOVA;
are altered in patients with chronic myeloid leukemia gmrGald 4M/+  gmrGald,4M/+  gmrGald, 4AM/+

To better explore the efficacy of the model we ana-
lyzed the Disabled gene that encodes for an adaptor pro-
tein acting downstream of many receptor tyrosine kinas-

Figure 4. A component of the BCR-ABL1-activated pathway in human leukemia
modulates the eye phenotype in Drosophila. Piled histogram chart showing the
frequencies of the three phenotypic classes in flies expressing BCR-ABL1

es.”” In the embryo Dab LOF disrupts the intracellular
localization of dAbl and consequently that of phospho-
rylated Ena and F-Actin accumulation.® In the fly eye we
observed an enhancement of the BCR-ABL1 phenotype
in animals heterozygous for a Dab deletion. Thus, we
further reduced Dab function by gene silencing.

(gmrGal4,4M) and heterozygous for a loss of function STATO2E** allele or over-
expressing a dominant negative allele STAT®™. Reduction of the function of STAT,
a gene encoding the homolog of the STAT5 protein involved in the BCR-ABL1-acti-
vated pathway in human leukemia cells, suppresses the BCR-ABL1-dependent
phenotype in the fly eye. The statistical comparisons were conducted using the
Mann-Whitney test (*P<0.05, **P<0.01, ***P<0.001).
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Interestingly, two independent RNAI lines worsened the
BCR-ABL1 phenotype more than the Dab deletion did
(Figures 2E and 5A, Online Supplementary Figure S2A,F-I):
most of the eyes were smaller and showed depigmented
scar-like tissue (Online Supplementary Figure S2A,EH,I).
Consistently, alterations of the ommatidia clusters,
revealed by Elav expression, worsened compared to
those of the control (Figure 5B-E). To establish whether
Dab might have a role in CML we analyzed the two
human counterparts of Disabled, Dab1 and Dab2 in
human primary cells. Dab1 is a large, common fragile site
gene and the Dab1 protein acts as a signal transducer that
interacts with many receptor tyrosine kinase pathways.*
Dab2 encodes for an adaptor protein implicated in
growth factor signaling, endocytosis, cell adhesion,
hematopoietic cell differentiation and cell signaling of
various receptor tyrosine kinases.” The expression of
both genes is often decreased in many human solid can-
cers, suggesting their possible role in oncogenesis.*"*
Interestingly, quantitative real-time polymerase chain
reaction analysis revealed a significant downregulation
of both genes in CML patients at diagnosis compared to
controls in peripheral blood or bone marrow samples
(Figure 6A,G). Analysis of bone marrow samples from
CML patients during molecular remission showed
increased levels of expression of both Dab1 (Figure 6B)
and Dab2 (Figure 6H) with respect to the levels in treat-
ment-resistant patients. Moreover, immunofluorescence
assays demonstrated a significant down-modulation of
both proteins in peripheral blood samples at diagnosis
compared to the levels in controls or patients in molecu-
lar remission (Figure 6C,D,1]). Finally, transfection exper-
iments in K562 cells using a plasmid carrying the whole
Dab1 coding sequence demonstrated that reactivation of
Dab1 expression reduced cell proliferation (Figure 6EF).

BCR-ABL1 expression impairs Drosophila blood cell
homeostasis
To further confirm the efficacy of the model, we inves-
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tigated the effects of BCR-ABL1 expression in the lymph
gland, the hematopoietic organ of the larva. The lymph
gland begins to develop in the embryo® and grows up
from multipotent progenitor cells (prohemocytes) that
proliferate and enter a quiescent phase during the second
instar (L2). During the third instar (L3) some prohemo-
cytes start to proliferate again and differentiate. The
lymph gland breaks apart at the beginning of metamor-
phosis releasing differentiated blood cells (hemocytes)
into the hemolymph, the Drosophila blood.** During the
L3, three functional regions can be distinguished in the
lymph gland:” the medullary zone, populated by prohe-
mocytes; the posterior signaling center that regulates the
exit of prohemocytes from quiescence; and the cortical
zone, made up of differentiating hemocytes.*** The
lymph gland can break up prematurely in late-L3 if the
number of differentiating hemocyte increases. As a reac-
tion to excessive hematopoiesis, the hemocytes aggre-
gate and a spontaneous process of melanization takes
place inducing the formation of melanotic nodules."***
Constitutive BCR-ABL1 expression under the control of
the domelessGal4 (domeGalg) driver, active in the
medullary zone of the lymph gland,"* is lethal (data not
shown). To overcome this problem, we repressed expres-
sion of BCR-ABL1 by co-expressing a heat-sensitive
mutant of the Gal4 repressor Gal80 (tubGal80™) until lar-
vae reached the desired instar (TARGET system).” While
BCR-ABL1 expression from the first instar (L1) induced
lethality (data not shown), expression from the L2 allowed
larvae to survive and to develop melanotic nodules at L3
(Figure 7A,B). This suggests that BCR-ABL1 expression
in the medullary zone precursors might induce an
increase of circulating hemocytes (Figure 7C). When
compared to controls (Figure 7A), 45% of
domeGal4,BCR-ABL1 3M,tubGal80™ larvae showed two
to three small melanotic nodules (Figure 7B,C). This cor-
relates with an increased number of circulating hemo-
cytes in hemolymph preparations (Figure 7D). BCR-
ABL1 expression starting from the early L3 did not show
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Figure 5. Dab downregulation enhances the eye phenotype due to BCR-ABL1. (A) Piled histogram chart showing the frequencies of the three phenotypic classes in

flies co-expressing BCR-ABL1 (gmrGal4,4M) and EGFP (UAS-EGFP/+;gmrGal4,4M/+

), or one of two independent Dab-RNAI constructs (VDRC#13005, VDRC#14008).

(B,C) Eye imaginal discs from wild-type late third instar larvae expressing EGFP under the control of the gmrGal4 driver in cells posterior to the morphogenetic furrow
and expressing the pan-neuronal marker Elav in cells committed to terminal differentiation. (D,E) Elav expression in eye imaginal discs from late third instar larvae
expressing BCR-ABL1 (D) or larvae co-expressing BCR-ABL1 and Dab-RNAI (E) under the control of the gmrGal4 driver construct. BCR-ABL1 expression reduces the
number of differentiated photoreceptors, as indicated by a decrease of Elav-expressing cells, and Dab downregulation enhances this phenotypic trait. The statistical
comparisons were conducted using a Mann-Whitney test (*P<0.05, **P<0.01, ***P<0.001).
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=

Dab1 expression

any significant phenotype (Figure 7C), indicating that only
when BCR-ABL1 is expressed when prohemocytes enter
quiescence is it able to increase hematopoiesis.
Consistently, constitutive expression of the kinase-dead
mutant BCR-ABL1*" did not induce any significant pheno-
type (Figure 7C). Since dAbl, like Dab and ena, is expressed
in the lymph gland,” we assessed whether decreased dAbI
function is able to rescue the phenotype. We co-expressed
BCR-ABL1 and AbI-RNAi, and observed a significant
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decrease of the phenotype penetrance (Figure 7E). We then
investigated whether Dab or ena downregulation interacts
genetically ~with BCR-ABL1
hematopoiesis as well. Dab-RNAi in the medullary zone
starting from L2 was able to enhance the melanotic nodule
phenotype, inducing a significant increase of the pene-
trance (Figure 7F). Consistently, larvae co-expressing Dab
(UAS-Dab) and BCR-ABL1 in the medullary zone starting
from L2 showed phenotypic suppression (Figure 7F).

expression  during

Figure 6. Altered pattern of
expression of the human Disabled
homologs, Dabl and Dab2, in
patients with chronic myeloid
leukemia. (A) Downregulation of
Dabl RNA expression in patients
with chronic myeloid leukemia
(CML) compared to the expression
in healthy donors (CTRL). In partic-
ular we found a 1 log reduction of
Dab1 expression in both peripher-
al blood (PB) (P<0.01) and bone
marrow (BM) (P<0.01) (median
values 2+ 0.02 versus 0.3 in PB
and 0.008 versus 0.04 in BM). (B)
Expression pattern of Dab1 in CML
patients during molecular remis-
sion (MR) compared to that in
treatment-resistant patients. (C)
Immunofluorescence staining of
Dab1 protein (red) in PB samples
of healthy donors, CML patients at
diagnosis and CML patients during
MR. Nuclei are stained in blue. (D)
Quantification of Dabl protein
expression in the immunofluores-
cence assay. (E) A °H-thymidine
proliferation assay showing a 20%
reduction of cell proliferation in
K562 cells transfected with Dab1
plasmid compared to control. (F)
Western blot of protein extracts
from K562 cells transfected with
an empty vector (lane 1) and trans-
fected with a Dab1 expression vec-
tor (lane 2), showing detectable
expression of Dabl only in K562
cells transfected with the Dabl
vector. Independent loads of equal
amounts of protein extract were
probed with antibodies raised
against BCR, Dab1 and GAPDH as
a loading control. (G) Down-regula-
tion of Dab2 RNA expression in
CML patients compared to the
expression in healthy donors. In
particular Dab2 expression was
found to be statistically decreased
(P<0.0001 and P<0.0001 in PB
and BM, respectively) with median
values of 0.12 versus 2.8 and 0.12
versus 0.7 in PB and BM, respec-
tively. (H) Pattern of expression of
Dab2 in CML patients during MR
compared to that in treatment-
resistant patients. () Immuno-
fluorescence staining of Dab2 pro-
tein (red) in PB samples of healthy
donors, CML patients at diagnosis
and CML patients during MR.
Nuclei are stained in blue. (J)
Quantification of Dab2 protein
expression in an immunofluores-
cence assay. The statistical com-
parisons were conducted using a
Student 't test (*P<0.05,
**P<0.01, ****P<0.0001). Bars
indicate the standard error.
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Moreover, ena-RNAi weakly suppressed the BCR-ABL1
phenotype (Figure 7G), decreasing the phenotype pene-
trance. As a control, we did not observe any phenotype
due to Dab or ena downregulation or Dab overexpression
in prohemocytes (Figure 7EG).

Discussion
In order to identify candidate genes and pathways

involved in the onset and progression of CML we devel-
oped and validated a CML genetic model based on trans-
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genic Drosophila expressing BCR-ABL1. In order to build
and characterize a human functional model that could be
sensitive to pharmacological inhibition and suitable for
studying the effects of BCR-ABL1 mutations identified in
patients with CML, we chose to express a completely
human p210-BCR-ABL1 protein, in contrast what has
been done previously.” The expression of the oncopro-
tein in all eye cells committed to differentiation as pho-
toreceptors or accessory cells (gmrGal4 driver) induces a
strong phenotype characterized by altered differentia-
tion of the ommatidia cells. The lack of phenotype in
flies expressing a BCR-ABL1 kinase-dead mutant sup-

Figure 7. BCR-ABL1 expression in the

hematopoietic precursor cells of the lymph
gland impairs Drosophila blood cell homeosta-

sis increasing the number of circulating blood

cells. (A) A w**® mid-L3 instar larva used as the
wild-type control. (B) A mid-L3 larva conditionally

expressing BCR-ABL1 in the hematopoietic pre-

cursors of the lymph gland medullary zone under
the control of the domelessGal4 driver construct

(dome:GFP/+;BCR-ABL1_3M,tub80TS/+). BCR-
ABL1 expression was induced in stage L2 or
early-L3 larvae by exposing the animals to 29°C
during the indicated larval instars to disrupt the
ability of the temperature-sensitive Gal80
mutant to inhibit Gal4 transactivation activity.
The black arrows in (B) point to melanotic nod-
ules. Anterior is on the left. (C) Penetrance of the
melanotic nodule phenotype in mid-L3 control
larvae expressing GFP under the control of the
domelessGal4 driver (domeGFP), in larvae con-
stitutively expressing a kinase-dead BCR-ABL1

mutant protein (dome:GFP/+;BCR-ABL1 KD/+)
and in larvae in which BCR-ABL1

(dome:GFP/+;BCR-ABL1_3M,tub80TS/+)

expression was induced starting from the L2 (L2)

or from the early-L3 (eL3) instars. (D) Evaluation
of the average number of hemocytes per field
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ABL1_3M,tub80TS/+) or together with either
Dab-RNAI (dome/+;BCR-
ABL1_3M,tub80TS/+;Dab-RNAi/+) or UAS-Dab
(dome/+;BCR-ABL1_3M,tub80TS/+;UAS-Dab/+)
is expressed from the L2 instar. (G) Penetrance
of the melanotic nodule phenotype in mid-L3
control larvae (dome:GFP), in larvae expressing
ena-RNAi (dome/+;ena-RNAj/+), and in larvae in
which BCR-ABL1 alone (dome:GFP/+;BCR-
ABL1_3M,tub80TS/+) or together with ena-RNAI
(dome/+;BCR-ABL1_3M,tub80TS/ena-RNAI) is
expressed from the L2 instar. The average phe-
notype penetrance is calculated from three inde-
pendent experiments, each involving 15-95 lar-
vae. The statistical comparisons were conducted
using a Student t test (*P<0.05, **P<0.01,
**%%P<0.001, ns=not significant). Bars indicate
the standard error.




ports the role of kinase activity in the eye phenotype.
Moreover, BCR-ABL1 expression and phosphorylation
levels correlate with the severity of the phenotype.
Consistently, BCR-ABL1 expression under the control of
gmrGal4 induces a decrease of photoreceptors expressing
Elav in eye imaginal discs and this correlates with the
disruption of the adult eye. Interestingly, partial loss of
dAbl function also slightly reduces the number of eye
cells expressing Elav at L3, and to a much greater extent
at later stages of development. This suggests that JAb is
implicated in the maintenance of neuronal commit-
ment“* and confirms that loss or gain of function of
dAbI/BCR-ABL1 can alter eye cell development” We
have shown that human BCR-ABL1 interacts and inter-
feres with the dAbl signaling pathway. Animals express-
ing BCR-ABL1 and heterozygous for the recessive Ab/'
allele or coexpressing either AbI-RNA/ or a kinase-dead
dominant negative Abl (AbI*'™) showed a weaker pheno-
type, suggesting that BCR-ABL1 and dAbl proteins most
likely share binding sites and/or targets of the kinase
activity. Consistently, co-expression of human BCR-
ABL1 and dAbl synergizes and the phenotype becomes
more severe. Notably, dAbl overexpression per se induces
a weak “rough” eye phenotype but the differentiation
program is not severely disrupted. We cannot exclude
that this is due to a level of dAbl expression below a crit-
ic threshold but it could also suggest that excessive dAbl
might be still, at least partially, negatively regulated. This
possible negative regulation seems to be overcome by
BCR-ABL1 since all animals co-expressing dAbl and BCR-
ABL1 showed a severe class -1 phenotype. Consistently,
LOF or downregulation of genes known to interact genet-
ically with dAbI LOF mutations interact in the same way
with BCR-ABL1 expression. Namely, pros and fax alleles
or deletions enhance the phenotype and this is consistent
with their roles in neuronogenesis and neuronal differen-
tiation. Moreover, ena LOF suppresses and Dab LOF
enhances the dAbl LOF phenotype'” and we observed
that both ena and Dab LOF and downregulation through
RNAI also modify the BCR-ABL1 phenotype in the same
way. Ena belongs to the ENA/VASP protein family
involved in regulation of the actin cytoskeleton.”** dAbl
regulates Ena by modulating its localization, most likely
through its phosphorylation. It is known that both dAbl
and the human/Drosophila BCR-ABL chimera phosphory-
late Ena’ in vitro and we established that human BCR-ABL1
expression in the eye also increases Ena phosphorylation.
This conservation of phosphorylation targets significantly
increases the reliability of our model for identifying rele-
vant BCR-ABL1 functional interactors. In this view the
observation that decreased Ena function suppresses phe-
notypes due to both dAbl mutations™ and BCR-ABL1
expression suggests that both phenotypes can be due to
Ena mislocalization and consequently actin cytoskeleton
alterations can be suppressed if Ena expression decreases.
In Drosophila, Abl and Dab are often co-expressed and the
phenotype due to Dab mutations mimics the dAbl pheno-
type. Epistasis experiments have shown that Dab func-
tions upstream of both dAbl and Ena, controlling their
localization and thus the actin cytoskeleton, and Dab LOF
does indeed enhance the phenotype due to dAbl muta-
tions.” Interestingly, Dab deletion or downregulation has
the same effect on the BCR-ABL1 phenotype. These find-
ings could be explained if Dab is able to regulate, at least
partially, BCR-ABL1 localization. This interaction might
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mitigate more severe BCR-ABL1-dependent effects when
Dab is expressed at a physiological level but not if Dab is
downregulated or its gene dosage is halved. Furthermore,
our study showed that Dab human homologs are less
expressed in both peripheral blood and bone marrow of
CML patients at diagnosis compared to their expression
in controls and are re-expressed in patients during molec-
ular remission. Moreover, Dab1 expression in transfected
K562 cells significantly decreases cell proliferation, con-
firming that Dab activity might alleviate the pathogenic
effects of BCR-ABL1. We then assessed whether our
model could help to fish-out homologs of leukemia-rele-
vant genes in an ongoing dosage-sensitive genetic screen
of the whole Drosophila genome. To this aim we consid-
ered STATY, a transcription factor phosphorylated and
activated by BCR-ABL1. Interestingly, LOF conditions of
STAT92E, encoding the fly homolog of various human
STAT, led to suppression of the BCR-ABL1 phenotype. In
order to discover a tissue that could be a reliable second
read-out for identifying BCR-ABL1 interactors relevant
for hematopoiesis and leukemia, we moved to the larval
hematopoietic organ, the lymph gland. We conditionally
expressed human BCR-ABL1 in the lymph gland
medullary zone where quiescent prohemocytes reside.
Only BCR-ABL1 expression during L2 induces the
appearance of melanotic nodules, which correlates with
an increase of circulating hemocytes. This phenotype can
be suppressed by dAbl downregulation, confirming that
dAbl is expressed in the lymph gland medullary zone®
where it contributes to BCR-ABL1 pathway activation
and to induction of the hematopoietic phenotype. It is
worth noting that both Dab and ena interact functionally
with BCR-ABL1 during hematopoiesis. In fact, while Dab
downregulation enhances the melanotic nodule pheno-
type and Dab overexpression suppresses it, ena downreg-
ulation decreases the penetrance of this phenotype, con-
firming that ena and Dab are also expressed in the lymph
gland medullary zone® and modulate BCR-ABL1 activity.
This phenotype is visible if BCR-ABL1 is expressed from
the L2, when prohemocytes become quiescent, but not if
it is expressed from the early L3, when the quiescent pro-
hemocytes are still present in the medullary zone of the
lymph gland. We are tempted to speculate that the dAbl
pathway, activated by BCR-ABL1, could be involved in
the mechanisms that regulate entry of prohemocytes into
the quiescent state rather than maintenance of this state.
This seems consistent with the observation that the
lymph glands in mid-L3 larvae expressing BCR-ABL1
from L2 are very small compared to those in controls and
do not show any clear partition (Giordani and
Bernardoni, unpublished data). This suggests that, upon
BCR-ABL1 expression, most of the prohemocytes could
undertake the differentiation pathway and leave the
lymph gland prematurely without becoming quiescent.
We did not test all pathways interacting with BCR-ABL1,
for example the Tyrreceptor/Ras pathway, which is
known to compete with BCR-ABL1 for binding with the
Grb2/Drk proteins' and is likely involved in the eye phe-
notype since the Sevenless Tyr-receptor has an estab-
lished role in eye differentiation.”” Nevertheless, we
present here a new and efficient CML model based on
Drosophila transgenic for human BCR-ABL1. This model
could be a powerful tool for identifying new genes and
pathways involved in the pathogenesis and progression
of CML.
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