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MicroRNAs, non-coding regulators of gene expression, are likely
to function as important downstream effectors of many tran-
scription factors including MYB. Optimal levels of MYB are

required for transformation/maintenance of BCR-ABL-expressing cells.
We investigated whether MYB silencing modulates microRNA expres-
sion in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated
microRNAs are important for the “MYB addiction” of these cells. Thirty-
five microRNAs were modulated by MYB silencing in lymphoid and
erythro-myeloid chronic myeloid leukemia-blast crisis BV173 and K562
cells; 15 of these were concordantly modulated in both lines. We
focused on the miR-17-92 cluster because of its oncogenic role in tumors
and found that: i) it is a direct MYB target; ii) it partially rescued the
impaired proliferation and enhanced apoptosis of MYB-silenced BV173
cells. Moreover, we identified FRZB, a Wnt/β-catenin pathway
inhibitor, as a novel target of the miR-17-92 cluster. High expression of
MYB in blast cells from 2 Ph+ leukemia patients correlated positively
with the miR-17-92 cluster and inversely with FRZB. This expression
pattern was also observed in a microarray dataset of 122 Ph+ acute lym-
phoblastic leukemias. In vivo experiments in NOD scid gamma mice
injected with BV173 cells confirmed that FRZB functions as a Wnt/β-
catenin inhibitor even as they failed to demonstrate that this pathway is
important for BV173-dependent leukemogenesis. These studies illus-
trate the global effects of MYB expression on the microRNAs profile of
Ph+ cells and supports the concept that the “MYB addiction” of these
cells is, in part, caused by modulation of microRNA-regulated pathways
affecting cell proliferation and survival.
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ABSTRACT

Introduction

The Philadelphia chromosome (Ph) is the typical chromosomal abnormality of
chronic myeloid leukemia (CML) patients.1 It  is also detected in a subset of B-cell
acute lymphoblastic leukemia (ALL), and less frequently in acute myeloid (AML)
and mixed-phenotype acute (MPAL) leukemias.1 The hallmark of the Ph chromo-
some is the translocation of the proto-oncogene ABL1 from chromosome 9 to the
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breakpoint cluster region gene (BCR) on chromosome 22,
generating the BCR-ABL1 fusion gene. Such a gene
encodes the p190, p210 or the p230 BCR-ABL1 isoforms;
these chimeric proteins have constitutively active tyrosine
kinase activity and promote the aberrant activation of sig-
naling pathways causing enhanced cell proliferation and
resistance to cell death.2 We identified several transcrip-
tion factors (TFs) whose expression/activity is regulated
by BCR-ABL1 oncoproteins and is required for BCR-
ABL1-dependent leukemogenesis.3-6 One such TF is MYB,
the prototypical TF of the Myb family,7 essential for fetal
and adult hematopoiesis8,9 and required for colony forma-
tion of myeloid leukemia blasts, a subset of T-cell
leukemia, and BCR-ABL1-transformed myeloid and B
cells.6,10-12 In vitro and in mice, BCR-ABL1-transformed cells
are more dependent on MYB expression than their normal
counterparts,6,12 supporting the concept that certain
leukemic cells are “addicted” to MYB.10,11,13 This concept
was validated in MLL-AF9-associated AML where partial
and transient MYB suppression phenocopies MLL-AF9
withdrawal, eradicating aggressive AML in vivo without
preventing normal myelopoiesis.14

MicroRNAs (miRNAs) are small molecules of approxi-
mately 22 nucleotides that reprogram gene expression,
promoting mRNA degradation and blocking mRNA trans-
lation.15 MiRNAs may be especially important in regulat-
ing the expression of TFs such as MYB that has distinct
biological effects in normal hematopoiesis and in
leukemic cells based on its expression levels.15,16

Regulation of MYB expression through miRNAs has been
reported previously.17-20 Levels of MYB expression may be
differentially controlled by multiple miRNAs and, con-
versely, MYB could control the expression of different
miRNAs9,17-21 to execute lineage-specific developmental
choices at critical junctions during hematopoiesis. In par-
ticular, overexpression of miR-15 reduced MYB levels in
vitro, suppressing erythroid and myeloid colony
formation.17 MYB is a direct target of miR-150, playing a
key role at different stages of B-cell development.18,20 

To gain more information on the role of MYB-regulated
miRNAs in leukemic cells, we investigated changes in
miRNA levels induced by MYB silencing in Philadelphia-
positive (Ph+) cells. We found that, upon MYB silencing, 15
miRNAs are  modulated in K562 and in BV173 Ph+ cells.
Among these, the miR-17-92 cluster was regulated tran-
scriptionally by MYB through binding to its 5’ regulatory
region. Restoring miR-17-92 expression in MYB-silenced
BV173 cells partly rescued the reduced proliferation and
enhanced apoptosis of these cells. The reduced expression
of the miR-17-92 cluster in MYB-silenced Ph+ cells was
associated with upregulation of FRZB, an inhibitor of the
Wnt/β-catenin pathway, critical for the maintenance of
BCR-ABL1-transformed stem cells.22

Methods

Cell lines
Philadelphia-positive BV173, SUP-B15 and K562 cells were used

for the experiments performed in this study.
Culture condition, infection with viral vectors to obtain deriv-

ative cell lines, transfection, microarray and transcriptional pro-
filing, cell proliferation, cell viability, cell cycle analysis, apopto-
sis assays, western blotting, RNA isolation and analysis by quan-

titative real-time PCR (qRT-PCR), chromatin immunoprecipita-
tion (ChIP) assays and luciferase assay techniques are all
described in the Online Supplementary Methods and Online
Supplementary Table S1.  

Details of statistical/bioinformatic analysis are also described in
the Online Supplementary Appendix.

Patients 
Bone marrow cells were obtained, after informed consent, from

2 Ph+ patients, one with CML-blast crisis with the p210 BCR-ABL
isoform, and another with a de novo ALL with the p190 BCR-ABL
isoform. In both cases, no additional chromosomal abnormalities
were detected by cytogenetic analysis.

The study was approved by the Ethical Committee of the
Regina Elena National Cancer Institute of Rome, in compliance
with the Declaration of Helsinki.

In vivo studies assessing the effects of ectopic FRZB
expression

Mice were injected in the tail vein with 2x106 BV173-ShMYB
7TFP pUltra-Empty Vector (EV) cells or BV173-ShMYB 7TFP
pUltra-hot-FRZB cells (FRZB). Five weeks after the injection, the
percentage of circulating leukemia cells was assessed by flow
cytometry detection of peripheral blood GFP+mCherry+ cells using
the LSR-Fortessa. Mice were sacrificed when moribund and the
survival time recorded. For in vivo β-catenin activity analysis, 106

GFP+mCherry+ cells (estimated by flow cytometry) were purified
from the bone marrow or the spleen of a mouse injected with EV-
transduced or FRZB-expressing BV173 cells, lysed and analyzed
for luciferase activity by using the Dual Luciferase Reporter Assay
System (Cat. # E1910) and the signal was acquired using a  Zylux
Femtomaster FB 12 luminometer.

Details of the in vivo studies are  available in the Online
Supplementary Appendix.

Results 

Differential expression of microRNAs in MYB-silenced
Philadelphia-positive leukemic cells

We showed previously that optimal levels of MYB
expression are required for transformation and mainte-
nance of BCR-ABL-expressing cells.6,12 Since miRNAs are
exquisite regulators of gene expression, it is likely that
MYB-regulated miRNAs are important for the “MYB addic-
tion” of BCR-ABL-transformed cells. To this end, we per-
formed microarray hybridization studies on RNA from the
CML-lymphoid blast crisis BV173 and CML-erythro-
myeloid blast crisis K562 Ph+ cell lines  transduced with the
doxycycline (Doxy)-inducible lentiviral vector pLVTSH-
MYB ShRNA (BV173-ShMYB and K562-ShMYB).23

Compared to untreated (not treated; NT) control cells,
Doxy treatment essentially abolished MYB expression in
BV173- and K562-ShMYB cells (Figure 1A, upper panel).
Unsupervised hierarchical clustering analysis shows expres-
sion levels of 519 miRNAs in NT and Doxy-treated [24
hours (h)] BV173- and K562-ShMYB cells (Figure 1A, lower
panel). Of these, 125 and 66 were differentially expressed
(P≤0.05) in MYB-silenced BV173- and K562-ShMYB cells,
respectively (Figure 1B). Of the 35 miRNAs whose expres-
sion was altered in both Ph+ cell lines, 15 were modulated
concordantly (Online Supplementary Table S2) and 20 discor-
dantly in the two lines (Online Supplementary Table S3).

MYB effects on miRNA profile of Ph+ leukemia cells
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Real-time PCR analysis of differentially expressed
miRNAs in doxycycline-treated BV173-, SUP-B15- and
K562-ShMYB cells

To validate the results of the miRNA microarray analy-
sis, expression levels of 5 miRNAs (miR-17, miR-18a, miR-
7, miR-324 and miR-4284) down-regulated by MYB
silencing in both cell lines were assessed by qRT-PCR.

These miRNAs were selected based on the fold change of
their expression in MYB-silenced cells and their role in
tumors.24-28 In agreement with the microarray data, expres-
sion of all 5 miRNAs was significantly down-regulated
after 48 h Doxy treatment (Figure 1C and D). Of note, lev-
els of miR-17 and miR-7 were significantly down-regulat-
ed in K562-ShMYB cells after 24 h Doxy treatment (Figure
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Figure 1. miRNA expression profile of MYB-silenced Philadelphia-positive (Ph+) leukemia cells and expression levels of miR-17-92 cluster members. (A) (Upper pan-
els) Western blots of a representative experiment showing specific knockdown of MYB in Doxycycline (Doxy)-treated cells; (lower panel) heat map of differentially
expressed miRNAs in Doxy-treated [24 hours (h)] K562-ShMYB and BV173-ShMYB cells. MiRNA expression levels are shown as color variations. Higher and lower
values are represented by red and green points, respectively. Pairwise distances between rows and between columns were computed by Euclide distance metric.
(B) Venn diagram of differentially expressed miRNAs: 35 miRNAs are commonly modulated in the indicated cell lines. (C and D) qRT-PCR of 5 selected miRNAs from
the 15 miRNAs modulated in the same direction in untreated (Not Treated; NT) or Doxy-treated (24-48 h) K562- and BV173-ShMYB cells. Samples were normalized
for RNU44 expression. Relative expression was calculated using the comparative Ct method. Data are the average of three independent experiments; error bars indi-
cate SEM. P-values (*P≤0.05; **P≤0.01) were determined using Student t-test. (E) Schematic representation of members of miR-17-92 cluster included in the
MIR17HG gene on Chr13q31.3. Arrows represent the direction of miRNA modulation based on the microarray experiment in K562-ShMYB (white) and BV173-ShMYB
(black). (F and G) qRT-PCR of the indicated members of miR-17-92 cluster in NT or Doxy-treated (24-48 h) K562-ShMYB and BV173-ShMYB cells. Samples were nor-
malized for RNU44 expression. QRT-PCR was performed in triplicate, including no-template controls. Relative expression was calculated using the comparative Ct
method. Data are the average of three independent experiments; error bars indicate Standard Error of Mean. P-values  were determined using Student t-test.
*P≤0.05; **P≤0.01.
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1C). Since miR-17 and miR-18a belong to the miR-17-92
cluster (Figure 1E) which is involved in BCR-ABL-depen-
dent transformation,29 we also assessed levels of cluster
members miR-19a-3p,-19b-3p,-20a-5p and miR-92-5p.
These miRNAs were among those expressed in both cell
lines in our microarray assay (Online Supplementary Tables
S3 and S4). In contrast with the microarray data, qRT-PCR
analysis showed that levels of all 4 miRNAs were down-
regulated in Doxy-treated (48 h) K562-ShMYB cells,
whereas only the expression of miR-19a-3p, miR-19b-3p
and miR-92-5p (24 h) was decreased in Doxy-treated
BV173-ShMYB cells (Figure 1F and G). These conflicting
results may depend on the greater sensitivity of the qRT-
PCR compared to the microarray assay. We also assessed
the effects of MYB silencing on the expression of the miR-
17-92 cluster in the Ph+ ALL cell line SUP-B15 which
expresses the p190 BCR-ABL isoform. In this line, Doxy
treatment (24 and 48 h) to silence MYB expression
induced a statistically significant decrease of miR-17, miR-
18a, miR-19a and miR-19b levels (Online Supplementary
Figure S1). Specificity of the effects of MYB silencing on
the expression of the miR-17-92 cluster were demonstrat-
ed by using a BV173 derivative line expressing a mutant
MYB cDNA harboring synonymous point mutations in
the sequence targeted by the MYB shRNA (shRNA-resis-

tant MYB BV173 cell line). Upon Doxy treatment to
silence endogenous MYB expression, we found that, in
contrast to the parental line (BV173-ShMYB), expression
of members of miR-17-92 cluster was not modulated in
the BV173 line expressing the MYB cDNA not targetable
by the MYB ShRNA (Online Supplementary Figure S2).
Thus, Doxy-induced changes in the expression of the
miR-17-92 cluster are a specific consequence of MYB
silencing.

MYB binds the promoter of the miR-17-92 cluster
To investigate whether MYB could directly regulate

transcription of the miR-17-92 cluster, we analyzed the
MIR17HG promoter for the presence of putative MYB
binding sites (MBS). Using MatInspector
(www.genomatix.de/matinspector.html), we scanned 4000 bp
upstream of the MIR17HG gene and identified several
putative MBS (Figure 2A). We focused on 5 MBS with the
highest matrix similarity score (Online Supplementary Table
S5). Genomic positions of these MBSs relative to
MIR17HG Transcriptional Start Site (TSS) are indicated in
Figure 2A. To assess whether MYB binds these regions 
in vivo, ChIP assays were performed in NT and Doxy-
treated BV173- and K562-ShMYB cells and de-cross-linked
DNA amplified with primers flanking genomic regions

MYB effects on miRNA profile of Ph+ leukemia cells
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Figure 2. MYB binding to the promoter of the miR-17-92 cluster. (A) Schematic representation of 4000 bp regulatory regions upstream of the MIR17HG promoter.
A transcription start site (TSS) is indicated. Arrows indicate the promoter region amplified by the specific primer pair used for qPCR amplification of immunoprecip-
itated chromatin. (B) ChIP analysis of the MIR17HG promoter using the indicated MYB antibody in untreated (Not Treated; NT) or Doxycycline (Doxy)-treated BV173-
ShMYB and K562-ShMYB cells. Results of qPCR are analyzed with the comparative Ct method. Values of each immunoprecipitated sample are expressed as per-
centage relative to their respective input and by subtracting the values obtained in the negative controls (no antibody). Error bars represent Standard Error of Mean
(SEM) (n=3); P-values (*P≤0.05) were determined using Student t-test. (C) (Left panel) Schematic representation of the reporter plasmids containing the MYB bind-
ing site (MBS) #1 (pGL3–prom1353) or its deletion mutant without the MBS#1 (ΔMBS#1-prom230). (Right panel) Dual luciferase assay performed in untreated or
Doxy-treated BV173-ShMYB cells transfected with the pGL3–prom1353 or the ΔMBS#1-prom230 plasmid. Promoter activity of each plasmid was determined 48
hours (h) after transfection. Luciferase activity values were normalized for transfection efficiency according to the activity of a co-transfected Renilla luciferase plas-
mid. Data are the average of three independent experiments performed in duplicate; error bars indicate Standard Error of Mean (*P≤0.05). 
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that include putative MBS (Figure 2A). As a positive con-
trol, ChIP was performed using an MBS-containing seg-
ment of the adenosine deaminase gene (ADA), a known
transcriptional target of c-MYB.30 MYB bound efficiently,
in both untreated cell lines, to the promoter region that
includes MBS#1, the site closest to the TSS of MIR17HG
(Figure 2B); in contrast, reduced binding was detected at
all other promoter segments (Figure 2B), especially in
BV173 cells. Binding of MYB to the region of the miR-17-
92 promoter that includes MBS#1 was markedly
decreased upon Doxy treatment (72 h) of BV173- and
K562-ShMYB cells (Figure 2B). As expected, MYB binding
to the ADA promoter was also decreased (Figure 2B). To
further investigate whether the miR-17-92 cluster is
directly regulated by MYB we carried out luciferase assay
using reporter plasmids with or without MBS#1 (PGL3-
prom1353 and ΔMBS#1-prom230, respectively) (Figure
2C, left). We found that the luciferase activity of the
ShMYB-BV173 cells transfected with the PGL3-prom1353
was decreased by approximately 33% after a 24 h Doxy
treatment to silence MYB expression; in contrast, in cells
transfected with the truncated ΔMBS#1-prom230 plasmid
lacking MBS#1 there was only a 4% decrease of luciferase
activity after Doxy treatment (Figure 2C, right). These
data strongly suggest that MYB is important for the tran-
scription of the MIR17HG locus. 

Involvement of the miR-17-92 cluster in the “MYB
addiction” of Ph+ leukemia cells

To investigate whether restoring expression of the miR-
17-92 cluster affects the phenotype of MYB-silenced cells,
we generated BV173-ShMYB cells over-expressing the
miR-17-92 cluster and assessed proliferation and survival
of these cells upon MYB silencing. These studies were not
performed in K562 cells because the biological effects
induced by MYB silencing in these cells were modest,
compared to those in BV173 cells.  Expression of MYB
was suppressed in Doxy-treated BV173-ShMYB cells and
in the miR-17-92 derivative line which exhibited increased
expression of each member of the miR-17-92 cluster
(Figure 3A). Compared to BV173-ShMYB-EV cells, the
miR-17-92 over-expressing cell lines showed increased
proliferation (P≤0.01) upon MYB silencing. This was evi-
dent after 24 h of Doxy treatment and persisted at 48 h
and 72 h (Figure 3B, left). Likewise, viability of Doxy-
treated BV173-ShMYB cells over-expressing the miR-17-
92 cluster was significantly increased (P≤0.01) compared
to that of Doxy-treated BV173-ShMYB-EV cells (Figure
3B, right).  DNA content analysis revealed that Doxy-
treated BV173-ShMYB cells over-expressing miR-17-92
have a greater proportion of S-phase cells than Doxy-
treated BV173-ShMYB-EV cells (12% vs. 6% after  48 h
Doxy treatment) (Figure 3C). In addition, cultures of
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Figure 3. Biological effects of over-expressed miR-17-92 cluster in MYB silenced Philadelphia-positive (Ph+) BV173 cells. (A) (Upper panel) Western blots of a rep-
resentative experiment showing specific knockdown of MYB in Doxycycline (Doxy)-treated [24, 48 and 72 hours (h)] BV173-ShMYB cells; (lower panel) qRT-PCR of
the indicated members of the miR-17-92 cluster in BV173-ShMYB-Empty Vector (EV) and the miR-17-92 over-expressing cells. Results are expressed as fold changes
[mean±Standard Error of Mean (SEM) from three independent experiments] in miRNA expression in BV173-ShMYB-miR-17-92 cells as compared with values in
BV173-ShMYB-EV cells. (B) MTT and ATPlite assays; data are the average of three independent experiments, and percentage of cell survival (left panel) and cell via-
bility (right panel) were assessed at the indicated times of Doxy treatment. (C) Percentage of S-phase cells over control for untreated or Doxy-treated (48 h) BV173-
ShMYB-EV and derivative miR-17-92 over-expressing lines (**P≤0.01). (D) (Left panel) Percentage of Annexin V for untreated or Doxy-treated (96 h) BV173-ShMYB-
EV and derivative miR-17-92 over-expressing lines (*P≤0.05). (Middle panel) Western blot of a representative experiment of MYB, uncleaved PARP, BCL-2 and actin
protein levels in BV173-ShMYB-EV and BV173-ShMYB-miR-17-92 over-expressing cells, 72 h after MYB silencing. (Right panel) Densitometric analysis by imageJ soft-
ware. Actin was used as loading control within the same sample and expressed as fold changes compared to control.
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Doxy-treated BV173-ShMYB over-expressing miR-17-92
cells had less apoptosis than Doxy-treated BV173-
ShMYB-EV cells, as indicated by the lower frequency of
Annexin V-positive cells (9% vs. 15%, after 96 h Doxy
treatment) (Figure 3D, left) and the increased expression of
uncleaved PARP and BCL-2 (48% and 14%, respectively)
(Figure 3D, middle and right panels).

Integrative analysis of gene expression profiles of
MYB-silenced cells and predicted miRNA-regulated
genes identifies novel putative miR-17-92 targets

We used gene expression profiling of MYB-silenced cells
to identify MYB target genes potentially regulated by the
miR-17-92 cluster. The miRWalk 2.0 database was used to
investigate potential interactions of the miR-17-92 cluster
with genes regulated by MYB silencing in BV173 and
K562 cells. From this analysis, we found that 44 genes
modulated by MYB silencing (15 up-regulated and 29
down-regulated) are predicted targets of the miR-17-92
cluster (Table 1 and Figure 4A). We focused on the up-reg-
ulated genes since the decreased expression of the miR-

17-92 cluster in MYB-silenced cells should increase the
levels of its putative targets. Thus, we performed qRT-
PCR to assess the expression of two candidate targets,
PBX2 and FRZB, involved in the regulation of proliferation
and apoptosis.31,32 Such analysis revealed a statistically sig-
nificant (P≤0.05) increase of PBX2 and FRZB expression in
MYB-silenced Ph+ ALL BV173 and SUP-B15 or K562 cells
(Figure 4B and C).

FRZB is a potential effector of the miR-17-92 cluster
in the “MYB addiction” of Ph+ leukemia cells

The oncogenic effect of the miR-17-92 cluster is caused
by the co-operation of its members in targeting tumor-
suppressive pathways.28,33 Several studies have shown that
the miR-17-92 cluster directly  targets “pro-apoptotic”
genes such as Phosphatase and tensin homolog (PTEN),
the apoptosis facilitator BCL2L11 (BIM) and the anti-
angiogenic factor thrombospondin-1 (THBS1) in normal
lymphopoiesis,34-37 in MYC-driven lymphomas38 and in
immunodeficiency or lymphoproliferative states.39 To
assess whether the expression of validated miR-17-92 tar-
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Table 1. Predicted down-and up-regulated target genes in BV173-ShMYB and K562-ShMYB cells after gene expression and miR-17-92 cluster
analyses. 
Down-regulated BV173 K562 Up-regulated genes Reference BV173 K562 
genes DFCtest DFCtest DFCtest DFCtest 

BAZ1B 2.26E-10 0.0239 ABCA1 36 0.009 0.006
BUB1 0.025 0.0033 ADARB1 1.01E-19 0.026
CASP6 0.001 0.0043 ARHGAP1 0.008 0.034
CNOT6L 0.027 4.65E-05 BPNT1 0.013 0.002
CPT1A 0.02 0.026 CD22 37 4.97E-15 0.003
EFNB2 0.046 0.0188 COL1A1 0.014 0.018
GBE1 4.74E-22 0.0034 FRZB 0.0001 0.036
HDAC4 0.004 0.0014 KIAA0513 1.55E-17 0.007
HRH2 5.14E-09 0.0222 PBX2 0.0003 0.012
ID2 0.031 0.0053 PEX10 0.032 0.016
ITGA4 2.53E-09 0.0152 PTP4A3 8.36E-17 0.041
ITGA4 2.53E-09 0.0004 RAB13 36 4.56E-14 0.032
MAD2L1 1.76E-08 0.0472 RPL19 0.005 0.007
MAP3K1 1.71E-09 0.0346 SPIB 0.003 0.01
MYO10 2.59E-10 0.0362 THBS1 35 0.001 0.023
NR3C1 0.03 0.0109
NRP2 0.002 0.0133
PDE3B 0.014 0.0059
PIBF1 0.047 0.0063
PRKRA 0.017 0.0087
REST 0.027 0.0256
RFC3 8.99E-11 0.025
RPS6KA5 0.028 0.0372
SCML2 0.03 0.0475
SDC2 0.014 0.0012
SERPINB8 7.04E-05 0.0111
TFRC 5.72E-10 1.72E-05
TLE4 7.65E-14 0.0017
TNFAIP3 7.89E-19 0.0026



gets is modulated by miR-17-92 overexpression, qRT-PCR
experiments were performed in Doxy-treated BV173-
ShMYB-EV cells and in the miR-17-92 over-expressing
line. After 24 h Doxy treatment, levels of BIM and PTEN
mRNA were essentially identical in both BV173-ShMYB-

EV and BV173-ShMYB-miR-17-92 over-expressing cells
compared to those in NT cells (Figure 4D). In contrast,
THBS1 mRNA levels showed an increase (P≤0.05) in
Doxy-treated BV173-ShMYB-EV cells compared to
untreated cells, and such an  increase was blocked by over-
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Figure 4. Transcriptional analysis and evaluation of mRNA expression levels of miR-17-92 cluster target genes. (A) Unsupervised hierarchical clustering of common
deregulated genes from gene expression analysis of parental and MYB-silenced BV173 and K562 cells. (B and C) qRT-PCR of PBX2 and FRZB expression levels upon
MYB knockdown [24 hours (h)] of the indicated Philadelphia-positive (Ph+) ShMYB cell lines. Results are mean of three experiments. Error bars indicate Standard
Error of Mean (SEM). (D) Analysis of mRNA expression levels, using SYBR Green-based qRT-PCR, of BIM, PTEN and THBS1 in untreated and Doxy-treated BV173-
ShMYB-Empty Vector (EV) and ShMYB-miR-17-92 cells. Results are mean of three experiments. Error bars indicate SEM. (E) Quantification by SYBR Green-based qRT-
PCR of PBX2 and FRZB mRNA in untreated and Doxy-treated BV173-ShMYB-miR-17-92 cells. Values are reported as 2-ΔCt. GAPDH gene expression was used as
endogenous control. Error bars indicate SEM (n=3). (F) (Left panel) Schematic representation of 3’UTRs of FRZB gene with putative binding sites for miR-17-92 clus-
ter. (Right panel) Schematic representation of reporter plasmids containing the wild-type (wt) or mutant (76-81 mut, 1091-1097 mut of miR-17-92-binding sequences)
FRZB 3’UTR. Dual Luciferase assay in recipient cells co-transfected with luciferase reporter vectors containing the wt-3’UTR FRZB or the indicated FRZB mutant and
either the hsa-miR-17, the hsa-miR-19a mimics or a control (Ctr)-mimic RNA. Firefly luciferase activity of each sample was normalized by Renilla luciferase activity.
Results are expressed as fold activation relative to the basal activity of the control mimic (ctr-mimic). (*P≤0.05). The normalized luciferase activity, set as mean of at
least three independent experiments performed in duplicate, is shown. Error bars represent the mean±SEM (n=3).
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expression of the miR-17-92 cluster (Figure 4D).
Expression levels of BIM, PTEN and THBS1 mRNA, after
24 h Doxy treatment, were assessed also in the SUP-B15
ShMYB cells analysis. This revealed a statistically signifi-
cant (P≤0.05) increase of BIM and THBS1 in MYB-silenced
SUP-B15 cells compared to untreated cells (Online
Supplementary Figure S3). 

The expression of p21 and E2F1 genes, two other exper-
imentally validated miR-17-92 targets,40 was also assessed
in MYB-silenced BV173 cells. MYB silencing induced an
increase in the expression of p21 but this increase was not
blocked by overexpression of the miR-17-92 cluster. In
contrast, expression of E2F1 was down-modulated after
MYB silencing and was not affected by overexpression of
the miR-17-92 cluster (Online Supplementary Figure S4).
These results suggest that MYB silencing modulates p21
and E2F1 expression independently of its effect on the
miR-17-92 cluster expression. 

Since our goal was to investigate novel miR-17-92 tar-
gets, potentially involved in the “MYB addiction” of Ph+

leukemia cells, we focused on FRZB because ectopic
expression of the miR-17-92 cluster blocked the increased
expression of FRZB mRNA but not of PBX2 mRNA (Figure
4E) induced by MYB silencing in BV173-ShMYB cells
(Figure 4B). FRZB is the founding member of the secreted
Frizzled-related protein (SFRP) family of Wnt inhibitors32,41

and suppresses Wnt signaling thus preventing the accu-
mulation of β-catenin into  the nucleus.42 Then, we used
miRwalk (http://zmf.umm.uni-heidelberg.de/apps/zmf/mir-
walk2/), TargetScan 5.2 (http://www.targetscan.org), and
miRanda (http://www.microrna.org/microrna) algorithms to
assess the presence of putative miR-17-92-binding sites
within the 3’untranslated region (3’UTR) of FRZB-mRNA.
This analysis identified one putative miR-17-92 binding
site for miR-19a (seed sequences: 76-81 bp) and one for
miR-17 and -20a (seed sequences:1091-1097 bp) (Figure 4F,
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Figure 5. Expression of the miR-17-92 cluster and its target FRZB correlates with MYB levels in Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL)
cells. (A) MiR-17-92 expression levels evaluated by stem-loop qRT-PCR in primary leukemia cells (Patient 1: p210BCR/ABL chronic myeloid leukemia (CML)-myeloid
blast crisis) compared to normal CD34+ cells from a healthy subject [Control (Ctrl) CD34+] and Patient 2 (p190BCR/ABL ALL) compared to normal peripheral blood
mononuclear (PBMC) cells (Ctrl/PB). Samples were normalized for RNU44 small-nucleolar RNA expression using the comparative Ct method. Data are the average
of three experiments; error bars indicate Standard Deviation (SD). (B) mRNA quantification of MYB and FRZB, by SYBR Green-based qRT-PCR, in Patient 1
(p210BCR/ABL CML-myeloid blast crisis) and Patient 2 (p190BCR-ABL ALL) compared to normal CD34+ cells and PBMC cells from healthy donors (Ctrl/CD34+ and
Ctrl/PB), respectively. Values are reported as 2-ΔCt normalizing to GAPDH gene expression. (C) mRNA expression by microarray of MYB or FRZB in normal B cells or
Ph+ ALL cells. (Values represent the sum of all probes signals for each gene and are derived from dataset GSE13159). 
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left panel). To assess whether FRZB is a direct target of
miR-17-92, a human FRZB 3’UTR fragment containing
wild-type or mutated miR-17 or miR-19a seed sequences
(Figure 4F, middle panel) was cloned downstream of the
firefly luciferase reporter gene and co-transfected with
miR-17 or miR-19a mimics in 293T cells. The relative
luciferase activity of the reporter with wild-type 3’UTR
was decreased by 27% upon expression of the miR-17
mimic and by 29% upon expression of the miR-19a
mimic; in contrast, there was no decrease in luciferase
activity of the mutant reporter (Figure 4F, right panel), sug-
gesting that FRZB is a direct target of miR-17 as well as of
miR-19a. 

To investigate whether FRZB has a role as a miR-17-92
target gene in the “MYB addiction” of BCR-ABL-trans-
formed cells, we assessed the relative expression of FRZB,
the miR-17-92 cluster and MYB in blast cells from 2 Ph+

leukemia patients (n=1: p210BCR/ABL CML-myeloid
blast crisis; n=1: p190BCR/ABL ALL). High expression of
the miR-17-92 cluster correlated with that of MYB and
was more abundant than in CD34+ or peripheral blood
mononuclear cells from healthy donors (Figure 5A and B,
left panel). In contrast, levels of FRZB were much higher in
cells from healthy donors than in blast cells from the Ph+

leukemia patients (Figure 5B, right panel). In agreement
with these findings, we found that, in a microarray dataset
of 122 Ph+ ALL samples, MYB mRNA levels were more
abundant in Ph+ ALL cells compared to normal B cells,
while the opposite was found for FRZB expression (Figure
5C).

To investigate directly whether expression of FRZB has
a negative effect for leukemia development, NOD scid
gamma (NSG) mice were injected with EV-transduced or
FRZB-expressing BV173 cells carrying the β-catenin-Luc
reporter plasmid and assessed for overall survival. Survival
of the two groups was identical (Figure 6A); however, 
β-catenin activity was markedly reduced in BV173 cells
isolated from the bone marrow or spleen of a mouse
injected with FRZB-expressing compared to EV-trans-
duced cells (Figure 6B). These data suggest that leukemia
induced by Ph+ BV173 cells is β-catenin-independent but
do not exclude the possibility  that FRZB-dependent regu-
lation of β-catenin activity is important for leukemia
induced by primary Ph+ ALL cells.

Discussion

The expression of MYB is critical for the proliferation
and survival of many leukemic cells, including BCR-ABL1-
transformed myeloid and lymphoid cells;6,12 however, the
mechanisms responsible for the “MYB addiction” of these
cells are only partially understood.

In this study, we assessed the miRNA expression profile
of MYB-silenced BV173 and K562 CML-blast crisis cells
with the goal of identifying miRNAs whose modulation
might explain the impaired proliferation and survival asso-
ciated with MYB knockdown in BCR-ABL1-transformed
lymphoid or myeloid precursors.6,12 Interestingly, MYB
appears to have broad effects, directly or indirectly, on the
levels of miRNAs since approximately 24% and 13% of
those expressed in BV173 and K562 cells, respectively,
were modulated by MYB silencing. Although many
miRNAs regulated by MYB exhibited changes in both cell
lines, a high number of the modulated miRNAs exhibited
cell-type specificity.

We speculated that those modulated by MYB in a cell-
type specific manner may regulate pathways required for
more specialized cell functions, while those regulated in
both cell lines may be involved in more general biological
processes, such as cell proliferation and survival. Within
the miRNAs regulated by MYB in both cell lines, we
focused on the miR-17-92 cluster because of its oncogenic
role in many tumors,28,43,44 its involvement in BCR-ABL1-
transformed cells,45 and its regulation by MYC,44 a known
MYB target.46 We found that MYB bound directly to the
miR-17-92 promoter, suggesting that its effects on the
expression of several members of the miR-17-92 cluster
are direct, although an indirect effect through other tran-
scription factors (eg. c-Myc) and/or co-activators cannot
be excluded.47 On the other hand, silencing MYB alone
does not abolish expression of the miR-17-92 cluster, sug-
gesting that other transcription factors also regulate the
expression of the miR-17-92 cluster in BCR-ABL1-trans-
formed cells.16 Compared to control cells, MYB-silenced
BV173 cells exhibit a marked inhibition of cell growth
which is due to cell-cycle arrest and induction of apopto-
sis.48 Thus, we asked whether restoring expression of the
miR-17-92 cluster would rescue the impaired growth of
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Figure 6. Effect of FRZB expression on leukemogenesis and β-catenin activity of Philadelphia-positive (Ph+) BV173 cells. (A) Survival of mice injected with 2x106

BV173-ShMYB 7TFP pUltra-Empty Vector (EV) or BV173-ShMYB 7TFP pUltra-hot-FRZB cells (FRZB). (B) Luciferase reporter assay for β-catenin activity in GFP+ cells
isolated from the bone marrow (bm) or spleen (sp) of a NOD scid gamma (NSG) mouse injected with (EV)- or FRZB-BV173 cells and sacrificed when terminally ill.
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MYB-silenced BV173 cells. Ectopic expression of the miR-
17-92 cluster caused an increase in the S phase fraction
and a decrease in the apoptosis of MYB-silenced BV173
cells, but the effect was modest. This is not surprising,
since silencing MYB expression induces global changes in
miRNA and mRNA levels causing an impaired prolifera-
tion and survival that cannot be rescued by expression of
the miR-17-92 cluster alone. The expression of some
established targets of the miR-17-92 cluster (e.g. p21 and
E2F1) was also markedly modulated by MYB silencing;
however, restoring the targets of the miR-17-92 cluster did
not change the effects on such expression induced by
MYB silencing, strongly suggesting that the predominant
mechanism of MYB regulation of these two genes is miR-
17-92-independent. In contrast, ectopic expression of
miR-17-92 completely blocked the upregulation of
THBS1, a known miR-17-92 target,37 and of FRZB, a novel
candidate for miR-17-92 inhibition, which is induced by
MYB silencing. FRZB functions as an inhibitor of the
Wnt/β-catenin signaling pathway which is activated in
CML stem cells/early progenitors and is important for
their proliferation and survival.22,42 However, ectopic
expression of FRZB in BV173 cells, when injected in NSG
mice,  had no effect on their survival, in spite of a marked
inhibition of β-catenin activity. 

These data suggest that BV173 cells induce leukemia in
mice through β-catenin-independent mechanisms but do

not exclude the possibility that FRZB-dependent regula-
tion of β-catenin activity is important for leukemia
induced by primary Ph+ ALL cells.

In summary, this study illustrates the global effects of
MYB expression on the miRNA profile of Ph+ leukemic
cells and supports the concept that the “MYB addiction” of
Ph+ BV173 cells is, in part, caused by modulation of
miRNA-regulated pathways affecting cell proliferation
and survival.
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