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Supplemental Methods: 

Selection of Organ Domains for Analysis: 

Organ domains from the 2005 NIH consensus criteria organ scoring sheet were used in the 

machine learning workflow (1).  For instance, thrombocytopenia was not included as it was not 

an organ domain in the 2005 NIH Consensus criteria scoring sheet.   

 

Selection of Sclerosis and Erythema Scoring: 

Another area where feature selection differed from conventional organ scoring was in the use of 

Hopkins sclerosis scores and percent body surface area erythema separately to phenotype skin 

involvement, as opposed to a NIH skin score.  These features were selected, because the 2005 

NIH skin score combines both sclerosis and erythema.  There is evidence that patients with 

sclerotic skin involvement have biologically distinct pathophysiology compared to patients with 

pure erythema (2).   

 

viSNE 

viSNE is a dimensionality reduction tool that allows for high-dimensional data to be mapped in 

two dimensions and visualized as a scatter plot (3, 4).   In this study, viSNE plots individual 

patients using pairwise distances in high dimension.  This means that each dot is equal to one 

patient.  In general, the patients closest to each other are most similar, while those farthest apart 

are most different.  viSNE is the visualization of an algorithm called t-Distributed Stochastic 

Neighbor Embedding (t-SNE).  Therefore, on all viSNE maps the axes are called t-SNE1 and t-

SNE2 (3).   



FlowSOM 

The FlowSOM algorithm is described in detail in previous work (5).  This algorithm uses a 

machine learning technique called “self-organizing maps” in order to cluster data.  This is an 

unsupervised tool, meaning that the data is fed to the algorithm and the algorithm the looks for 

clusters without human input.  The one aspect of human input needed for this algorithm to run is 

the number of clusters the algorithm should look for.   

 

Marker Enrichment Modeling 

The marker enrichment modeling algorithm is described in detail in previous work (6).  MEM 

captures features that are either enriched or specifically lacking in a test group relative to a 

reference. As used here, the test group was one patient cluster and MEM compared the organ 

features enriched or lacking in this cluster to those of the reference: all remaining patients.  

MEM enrichment represents the characteristics of the total cluster rather than individual patients, 

and enriched clusters often had either severely involved organs with high scores or the cluster 

had consistent organ involvement even at a low score.  The converse is true for MEM de-

enrichment.  The formula combines both magnitude of the feature (e.g., a NIH score of 3 will 

have more weight than a NIH score of 1) as well as the interquartile range of features within a 

population, therefore if the feature is more homogenous in a patient cluster the MEM score will 

be higher.   

 

Cluster Stability Analysis and Parameter Optimization: 

In order to test for cluster stability, multiple runs of the machine learning workflow were run and 

were compared (Supplemental Figure 3).  This has value in order to determine whether the 



stochastic process of viSNE and FlowSOM was returning reproducible clusters (7).  Cluster 

stability was quantified using F-measure, the harmonic mean between precision and recall.   

 

F-measure = 2(sensitivity x precision)/(sensitivity + precision) 

 

F-measure was specifically calculated comparing an original reference cluster to a replicate 

cluster, with the original reference cluster as truth (6).  F-measure of 1 represents the best 

agreement, while F-measure of 0 represents the least agreement.  Clusters that were the same 

between the original and replicate analysis were determined based on which original cluster 

identity was most common within a new cluster.  If an original cluster was most common within 

2 new clusters, they could be combined as a single cluster for F-measure analysis.   

 

Cluster stability was demonstrated by the number of highly stable clusters.  Highly stable 

clusters were defined as those with a median f-measure > 0.85.  When selecting if lung should be 

included as a feature and cluster number, optimal parameters were selected by those that 

produced the greatest number of highly stable clusters.   

 

Multivariate Cox Proportional Hazards Modeling 

A multivariate cox proportional hazards model was constructed to test if Decision Tree Risk 

Group was independent of previously identified risk factors for poor outcomes in cGVHD (8).  

The initial model included: NIH Severity, donor gender, disease status, prior acute GVHD, 

patient age, platelets at cGVHD onset, and Decision Tree Risk Group.  Covariates that had a p-

value > 0.1 in univariate analyses were excluded from the model; these included: patient age, 



cancer disease status, prior acute GVHD, and gender mismatch.  The final model consisted of 

Decision Tree Risk Group, NIH Severity, and platelets as a continuous variable.  Platelets were a 

time dependent covariate, therefore they were split into two groups at 590 days of observation 

using a step function method previously described (9).   

 

Bootstrapping Analysis 

A bootstrapping analysis was used to determine stability of cluster risk score from the decision 

tree over 10 runs of analysis (Figure 7).  130 patients were selected randomly and coefficients of 

risks for each cluster were determined.  The standard deviation of the coefficient of risk for each 

cluster was calculated across the 10 subsamples.    

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



 
Supplemental Table 1. Patient and Transplantation Characteristics at cGVHD Development 
(Study Entry) 
 
Characteristics 
 

Training Cohort n=339 Patients* 

Age (years) 
 
Male, % 
  
Race, % 

Caucasian 
Asian 
African American  
Other 

 

51 [42-59] 
 

188 (55.5) 
 
 

305 (90.0) 
17 (5.0) 
7 (2.1) 
10 (2.9) 

 
Disease Histology, % 

Acute leukemia 
Myeloid disorder 
Lymphoid disorder 
Other 
 

Disease Status Before Transplant 
Early 
Intermediate 
Advanced 

 
 

153 (45.1) 
70 (20.6) 
108 (31.9) 

8 (2.4)  
 
 

69 (20.4) 
140 (44.3) 
120 (35.4) 

 
 
Donor Match 

HLA Identical Sibling  
Other related 
Well-matched unrelated 
Partially matched unrelated  
 

Donor Female, Patient Male 

 
 

138 (40.7) 
14 (4.1) 

140 (41.3) 
47 (13.9) 

 
92 (27.4) 

 
NIH Overall Severity Score  

Mild 
Intermediate  
High  
 

Prior Acute GVHD (II-IV only), % 
 

 
31 (9.1) 

167 (49.3) 
141 (41.6) 

 
183 (54.0) 

*Variables are shown as Median [IQR] for continuous variables and as n (%) for categorical 
variables.   



  
Supplemental Table 2.  2005 NIH Organ Scores at time of cGVHD*  
 

 NIH 
Liver 

NIH 
Skin 

NIH 
Lung 

NIH 
Eye 

NIH 
Mouth 

NIH 
GI 

NIH 
Joint 

Hopkins 
Sclerosis^ 

Hopkins 
Fascia 

 
0 

 
151 

(44.5) 

 
133  

(39.2) 

 
268 

(79.1) 

 
192  

(56.6) 

 
125 

(36.9) 
 

 
213 

(62.8) 

 
258 

(76.1) 

 
289  

(85.3) 

 
291  

(85.8) 

 
1 

 
91  

(26.8) 

 
64 

(18.9) 

 
54 

(15.9) 

 
108 

(31.9) 

 
149 

(44.0) 
 

 
93 

(27.4) 

 
54 

(15.9) 

 
35 

(10.3) 

 
33 

(9.7) 

 
2 

 
63 

(18.6) 

 
74 

(21.8) 

 
17 

(5.0) 

 
37 

(10.9) 

 
54 

(15.9) 
 

 
32 

(9.4) 

 
24 

(7.1) 

 
5 

(1.5) 

 
11 

(3.2) 

 
3 

 
34  

(10.0) 

 
68  

(20.1) 

 
0 

(0.0) 

 
2 

(0.6) 

 
11 

(3.2) 
 

 
1 

(0.3) 

 
3 

(0.90) 

 
3 

(0.9) 

 
4 

(1.2) 

*Variables are shown as N (%)  
^Hopkins Sclerosis Score also contains Score of 4 in n=7 patients (2.1%).   
 
 
 



 
 
 
Supplemental Figure 1.  Overview of the machine learning workflow for patient disease 
analysis and risk stratification. 
The computational workflow used to classify 339 cGVHD patients according to organ domain 
phenotypes patients is shown.  All 8 organ domain scores were used in t-SNE/viSNE analysis to 
reduce the dimensionality from 8 dimensions to 2 dimensions.  In the resulting t-SNE map, patients 
with similar patterns of organ involvement were embedded in the same region of a two-
dimensional map.  FlowSOM was then used to algorithmically identify patient clusters using the 
t-SNE axes.  MEM scores and labels for the 7 resulting cGVHD patient clusters were then 
calculated (heatmap) and overall survival was analyzed for aggregated low-, intermediate-, and 
high-risk groups.   
 
 
 
 
 
 
 
 
 



 
 
Supplemental Figure 2. NIH Lung Symptom Score Does Not Contribute to Patient 
Clustering (A) viSNE analysis for n=339 patients with Lung Symptom Score shown as heat.  
(B) FlowSOM clusters.  (C) MEM analysis, with enrichment or de-enrichment in all organ 
domains except lung.  (D) NIH Lung Symptom Score from Filipovich et al. 2005.   
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplemental Figure 3. Cluster stability by f-measure is improved by removing lung 
symptom score from analysis.  (A) This analysis includes lung symptom score and 8 FlowSOM 
clusters.  The original serves as the reference for clustering analysis.  MEM labels for each 
cluster are shown (left).  Four additional replicates of viSNE and FlowSOM analysis on n=339 
patients with cGVHD were performed.  Those containing the highest proportion of patients in 
common with an original cluster are considered equivalent clusters and appear in the same color. 
F-measure is shown for each cluster in each run of analysis when compared to the original as 
truth.  The median f-measure for each cluster is shown, with median f-measures > 0.85 (highly 
stable) highlighted in green, 2 clusters.  (B) The same workflow described in panel A was 
repeated, this time dropping lung symptom score from analysis. Four highly-stable clusters are 
highlighted in green. (C) Highest absolute MEM value (0-10) for analysis in panel A is 
illustrated as heat (brighter yellow indicating more enrichment), with enrichment for all values 
except Lung.  (D) MEM labels for 8 clusters found when MEM was included in analysis are 
shown, with corresponding risk groups and results from cox-proportional hazards analysis.   
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Supplemental Figure 4. Clusters are stable with 6, 7 and 8 clusters, with stability optimized 
at 7 clusters.  (A) viSNE and FlowSOM workflow, with 8 FlowSOM clusters.  The original 
serves as the reference for clustering analysis.  MEM labels for each cluster are shown.  Four 
additional replicates of viSNE and FlowSOM analysis on n=339 patients with cGVHD were 
performed.  Those containing the highest proportion of patients in common with an original 
cluster are considered equivalent clusters and appear in the same color. F-measure is shown for 
each cluster in each run of analysis when compared to the original as truth.  The median f-
measure for each cluster is shown, with median f-measures > 0.85 (highly stable) highlighted in 
green and number shown.  (B) Workflow repeated for 7 clusters.  (C) Workflow repeated for 6 
clusters.   
 
 
 
 
 
 
 

t-S
N

E
2

Replicate 1 Replicate 2 Replicate 3 Replicate 4

1
2
3
4
5
6
7

OriginalB Original, Figure 1 clusters
Median
(N = 4)

0.98
0.71
0.96
0.88
0.81
1.00

F-measure
0.71
0.95
0.99
0.97
0.86
0.74
0.95

F-measure

0.95
0.67
0.95
0.82
0.83
0.95

F-measure

0.95
0.99
0.95
0.87
0.68
1.00

F-measure

▲Joint+10 Fascia+5 Scler.+4▼Mouth-5 Liver-10

▲Liver+10 

▲Mouth+5  Eye+5 Liver+5 GI+1

▲Liver+5 

▲Eye+10 Liver+5

▲BSA Red+6 ▼Liver-10

▲Mouth+5 ▼Liver-10

0.95
0.85
0.96
0.87
0.78
0.98

7 Clusters

t-SNE1

t-S
N

E
2

OriginalA  8 Clusters

1
2
3
4
5
6
7 ▲Liver+10

▲  

 

▲ BSA Red +8

▲

Liver

+5 

8

▲Joint+10 Fascia+5 Scler.+4▼Mouth-5 Liver-10 

+5

Liver+10

▲BSA +8   ▼Liver -10

Original Clusters
▲Eye      Liver+10 +5

Mouth ▼Liver -10

▲Mouth    Liver   GI  +5 +5 +1

t-S
N

E
2

Replicate 1 Replicate 2 Replicate 3 Replicate 4

1
2
3
4
5
6

OriginalC Original Clusters
Median
(N = 4)

0.74
0.96
0.89

1.00

F-measure
0.95
0.86
0.95
0.86
0.74
0.95

F-measure

0.93
0.95
0.82
0.83
0.95

F-measure

0.73
0.96
0.87
0.68
1.00

F-measure

▲Joint+10 Fascia+5 Scler.+4▼Mouth-5 Liver-10

▲Liver+10 

▲Mouth+5  Eye+5 Liver+5 GI+1

▲Liver+10 

▲BSA Red+8 ▼Liver-10

▲Mouth+5 ▼Liver-10

0.80
0.96
0.87
0.71
0.98

6 Clusters

t-SNE1

t-SNE1

Eye+1

0.98 0.95 0.95 0.95

4

5

4

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Median
(N = 4)

0.98
0.71
0.96

0.90

0.88

F-measure
0.71
0.95
0.99
0.97

0.61

0.86

F-measure

0.95
0.91
0.95

0.92

0.82

F-measure

0.95
0.99
0.95

0.73
1.00
0.73

F-measure

0.95
0.95
0.96

0.82

0.84
1.00 0.95

0.68

0.95

0.89 0.70

0.98



 
 
 
 

 
 
 
Supplemental Figure 5.  Machine Learning Workflow Shows 5 Highly Reproducible 
Clusters (A) The original serves as the reference clustering analysis.  This is the analysis 
described throughout the text and first shown in Figure 1.  MEM labels for each cluster are 
shown below.  (B) Four additional replicates of viSNE and FlowSOM analysis on n=339 patients 
with cGVHD were performed.  Clusters are color coded to match the original analysis. Those 
containing the highest proportion of patients in common with an original cluster are considered 
equivalent clusters and appear in the same color. F-measure is shown for each cluster in each run 
of analysis when compared to the original as truth.   
 
 
 
 
 
 



 
 
Supplemental Figure 6. NIH overall severity does not stratify survival in a Kaplan-Meier 
analysis.  Cohort of patients stratified by mild, moderate and severe cGVHD.  Overall survival 
was the end point in this analysis.   
 
 
 
 
 
 
 
 
 
 



 
Supplemental Figure 7. Platelets are not associated with machine learning clusters 
(A) Box and whisker plots for platelets (y-axis) stratified by patient machine learning cluster (x-
axis) are shown.  (B) Platelets x 103/mcL are shown as heat on the original viSNE map with 
n=339 patients, with color of dot indicating platelet value at time of cGVHD.  
Thrombocytopenia, defined as platelets <100 x 103/mcL at time of cGVHD is shown as heat with 
blue indicating thrombocytopenia and red indicating absence of thrombocytopenia.  Patient 
clusters on viSNE are shown for reference.   
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