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Online Supplementary Texts
S1 Model setup

The total number of proliferating stem cells is set to TY = 106 cells [1]. The total numbers of quiescent stem cells
and differentiated cells are assumed to satisfy steady-state conditions within our model equations, which leads to TX =
(pY X/pXY )TY and TW = (pW/rW )TY . To describe a number of differentiated cells much higher than the number of prolif-
erating stem cells, we define the total number of differentiated cells by TW = 1012 [1], thereby implying that parameters
pW and rW shall satisfy the relation pW/rW = 106. Assuming that the mean lifetime 1/rW of a differentiated cell is about
7.5 days [2], i.e., 0.25 months, we have rW = 4 month−1, and pW = 4×106 cells/month, which can be interpreted as the
monthly production of differentiated leukemic cells by each proliferating stem cell.

The modeled BCR-ABL1 levels in each cell compartment, LX
MOD, LY

MOD and LW
MOD, are described as the proportion of

leukemic cells in each compartment, i.e.,

LX
MOD(t) = 100× Y (t)

TX
, LY

MOD(t) = 100× Y (t)
TY

, LW
MOD(t) = 100×W (t)

TW
. (SE1)

These are the mathematical expressions used to calculate the BCR-ABL1 levels shown in the Figures of our manuscript.
We point out that a potential constant bias in the correspondence between BCR-ABL1 levels and tumor load does not
change the results of our analysis, since it only affects the intercepts A and B of the biexponential fit, while the slopes α

and β remain the same (see also Online Supplementary Text S2).

The initial conditions assume that the initial BCR-ABL1 level in each compartment is equal to the observed initial BCR-
ABL1 L0 level of each patient,

Y (0) = Y0 =
L0

100
TY , X(0) =

L0

100
TX =

pY X

pXY
Y0, W (0) =

L0

100
TW =

pw

rW
Y0.

Competition between normal and leukemic cells is described implicitly, through the assumption of constant total cell
numbers in each cell compartment. This assumption of constant total cell numbers (normal+leukemic) reflects the idea
of a competition for limited resources and niche space. Therefore, during therapy, each leukemic cell removed by the
TKI effect is replaced by a normal cell in the corresponding compartment. Off therapy, the population of leukemic cells
expands and outcompetes their normal counterparts; for each new leukemic cell, a normal cell is removed. It is important
to note that, off-therapy, as the number of leukemic cells grows, the total number of cells may eventually surpass the levels
described by TY , TX and TW . This is an aspect which is also well known for late chronic and accelerated phases of CML
which are characterized by high cell counts. Technically, the assumption of a constant cell number is a simplification of
a more complex, potentially regulated process. Our results do not depend on the precise choice of a fixed compartment
size.

S2 Model solution and correspondence between phenomenological and mechanistic parameters

In our differential equation model, the first two equations form a decoupled linear system, which can be written in vector
form as

d
dt

[
X
Y

]
=

[
pXY −pY X −q
−pXY pY X

][
X
Y

]
. (SE2)

Using standard methods for solving linear systems of ODEs, we obtain the solutions

Y (t) = Y0

(
C1eλ1t +C2eλ2t

)
and X(t) = Y0

(
C3eλ1t +C4eλ2t

)
, (SE3)

where λ1 and λ2 are the eigenvalues of the linear system (SE2),

λ1 =
1
2

(
−pXY − pY X −q−

√
(pXY + pY X +q)2−4pXY q

)
, λ2 =

1
2

(
−pXY − pY X −q+

√
(pXY + pY X +q)2−4pXY q

)
.
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and the constants C1, C2, C3 and C4 are

C1 =
−pXY − pY X +q+

√
(pXY + pY X +q)2−4pXY q

2
√

(pXY + pY X +q)2−4pXY q
,

C2 =
pXY + pY X −q+

√
(pXY + pY X +q)2−4pXY q

2
√

(pXY + pY X +q)2−4pXY q
,

C3 =
pY X

pXY

(
−pXY − pY X −q+

√
(pXY + pY X +q)2−4pXY q

2
√
(pXY + pY X +q)2−4pXY q

)
,

C4 =
pY X

pXY

(
pXY + pY X +q+

√
(pXY + pY X +q)2−4pXY q

2
√
(pXY + pY X +q)2−4pXY q

)
.

(SE4)

Substituting the expression of solution Y (t) in the expression of LY
MOD(t) = 100× (Y (t)/TY ) and using the definition of

Y0, the modeled BCR-ABL1 levels of proliferating LSCs can be written as

LY
MOD(t) = K1eλ1t +K2eλ2t ,

where Ki = L0 Ci, for i = 1,2.

On the other hand, the observed BCR-ABL1 levels are described by the phenomenological characteristics as (in terms
of A, B, α and β, see main text)

LOBS(t) = Aeαt +Beβt .

The structural similarity between the modeled BCR-ABL1 ratio, LY
MOD(t), and the observed biphasic decline, LOBS(t),

allows to express the phenomenological (i.e., clinically observable) parameters (A,B,α,β) in terms of the mechanistic
(i.e., functionally interpretable) parameters (pXY , pY X ,q,L0), and vice-versa. Indeed, we can equal the expressions of
LY

MOD(t) and LOBS(t) and obtain:

α = λ1 =
1
2

(
−pXY − pY X −q−

√
(pXY + pY X +q)2−4pXY q

)
,

β = λ2 =
1
2

(
−pXY − pY X −q+

√
(pXY + pY X +q)2−4pXY q

)
,

A = K1 = L0

(
−pXY − pY X +q+

√
(pXY + pY X +q)2−4pXY q

)
2
√
(pXY + pY X +q)2−4pXY q

,

B = K2 = L0

(
pXY + pY X −q+

√
(pXY + pY X +q)2−4pXY q

)
2
√
(pXY + pY X +q)2−4pXY q

.

(SE5)

Inverting these formulas, we have

L0 = A+B, q =−αA+βB
A+B

, pXY =−αβ(A+B)
αA+βB

, pY X =− AB(α−β)2

(A+B)(αA+βB)
. (SE6)

We denote this correspondence between the phenomenological and mechanistic parameters as the exact solution. With
the above correspondences, we derive an explicit determination of model parameters based on the kinetic parameters
estimated from the patient data. In fact, for each patient the individual values of A,B,α and β are calculated by fitting
a bi-exponential regression model to the BCR-ABL1 levels of individual patients. From these estimates, the individual
values of L0, q, pXY and pY X are calculated with equations (SE6). Using these values, the model simulations reproduce
the bi-exponential fit of the patient specific BCR-ABL1 levels. See Online Supplementary Figure S1 for the time courses
of each of the 122 selected patients.

S3 Model parameters values

Using the above correspondence, the median parameter values obtained from the available dataset of 122 selected patients
were q = 1.00394, pXY = 0.05380, pY X = 0.00095 and L0 = 106.6%. Using these values and the median latency time of
T = 6.88 years, we estimated a median value of the proliferation rate pY = 0.18701. In all figures illustrating the model
behavior (figures 1C, 2, 3; Online Supplementary Figures S2, S3, S4, S5, S6, S8, S9, S10), we used approximated median
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values, given by q = 1, pXY = 0.05, pY X = 0.001, L0 = 100% and pY = 0.2 (corresponding to a latency time T = 6.45
years). In figure 4C, we used the values q = 0.9, pXY = 0.055, pY X = 0.004, L0 = 100% and pY = 0.24.

In the Online Supplementary Text S13 we show that an alternative model formulation without LSCs deactivation (pY X = 0)
leads to qualitatively similar results.

S4 Stochastic model simulations

The critical events, which determine the efficacy of low-dose TKI, occur when BCR-ABL1 ratios are low and proliferating
LSCs are present in the hundreds (Online Supplementary Figure S2). Stochastic effects could generate different results
regarding treatment failure, due to changes in the time to rebound of proliferating LSCs. Therefore, we implemented a
stochastic version of the ODE model using a Gillespie algorithm. The stochastic transitions considered were:

X
pXY−−→ Y, Y

pY X−−→ X , Y
pY−→ 2Y, Y

eT KI−−→ /0, Y
pW−−→ Y +W, W

rW−→ /0.

We’ve used the same model parameters as in the illustrative figures showing the ODE simulations: pY = 0.2, eT KI =
q+ pY = 1.2, pXY = 0.05, pY X = 0.001, L0 = 100%, rW = 4 and pW = 4× 106. We simulated the stochastic model
1,000 times. The results of several representative stochastic simulations (Online Supplementary Figure S11) show that
the overall dynamics are the same, thereby largely excluding different outcomes and implying that even in the stochastic
scenario the TKI dose reduction is expected to retain the long-term treatment efficiency.

S5 Approximations for slopes α and β

The exact solution can be simplified by scaling arguments. Indeed, the distributions of parameters q, pXY and pY X in
the patient population show that these parameters are dispersed over several orders of magnitude (figure 1B). Therefore,
defining the scaling parameters

ε1 =
pY X

pXY
, ε2 =

pXY

q
, ε3 =

pY X

q
= ε1ε2,

we can derive simplified expressions for the slopes α and β. To simplify the expression for α = λ1, we substitute pY X =
ε1ε2q and pXY = ε2q in (SE5) and obtain

α = λ1 =−q

1+ ε2 + ε1ε2 +

√
(1+(1+ ε1)ε2)

2−4ε2

2

 .

Expanding this expression in power series of ε2 we have

α = λ1 =−q
(
1+ ε1ε2 + ε1O(ε2

2)
)
=−q(1+O(ε3)) .

Similarly, to simplify the expression of β = λ2, we substitute pY X = ε1 pXY and q = pXY/ε2 in (SE5), and expand the
result in a power series of ε2. We obtain

β = λ2 =−pXY
(
1− ε1ε2 + ε1O(ε2

2)
)
=−pXY (1+O(ε3)) .

Due to the negligible magnitude of ε3, we can approximate the slopes as α≈ α∗ =−q, and β≈ β∗ =−pXY .

This is referred to as the approximated solution. Due to the very good agreement between exact and approximated
solutions (relative error of 0.1% for the median patient) and the simplicity of the approximated formulas, one can directly
interpret the bi-phasic decline in terms of the underlying mechanisms (figure 1C,D, Online Supplementary Figure S2).

S6 Approximations for model solutions

Additionally, we deduce approximations Y ∗(t) and X∗(t) for the numbers of proliferating and quiescent LSCs, as well
approximations LY∗

MOD(t) and LX∗
MOD(t) for the respective modeled BCR-ABL1 levels. See figure 1C and Online Supple-

mentary Figure S2 for a comparison of such approximations with exact solutions.

First, substituting pY X = ε1ε2q and pXY = ε2q in the expressions for C1 and C2, and expanding the results as power series
of ε2, we obtain

C1 = 1− ε3 +O(ε2ε3) and C2 = ε3 +O(ε2ε3).

Retaining the terms up to order ε3, we obtain the approximations

C1 ≈C∗1 = 1− pY X

q
and C2 ≈C∗2 =

pY X

q
. (SE7)
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Additionally, using the approximations λ1 = α≈−q and λ2 = β≈−pXY , we obtain the approximation

Y (t)≈ Y ∗(t) = Y0
(
C∗1eqt +C∗2e−pXY t)= Y0

(
1− pY X

q

)
e−qt +Y0

(
pY X

q

)
e−pXY t . (SE8)

The corresponding approximation for the BCR-ABL1 levels of proliferating LSCs is

LY
MOD(t)≈ LY∗

MOD(t) = 100× Y ∗(t)
TY

= L0

(
1− pXY

q

)
e−qt +L0

pXY

q
e−pXY t . (SE9)

Now, we obtain approximations for the quiescent LSCs. To simplify the expressions for C3 and C4, we use the same
procedure as above for C1 and C2, and obtain

C3 =−ε3− ε2ε3 +O(ε3ε
2
2), C4 = ε1 + ε3− ε2ε3 +O(ε3ε

2
2 + ε

2
3).

Taking approximations of order ε3 and using the definitions of ε1 and ε3, we obtain

C3 ≈C∗3 =− pY X

q
, C4 ≈C∗4 =

pY X

pXY
+

pY X

q
.

Therefore, the exact solution X(t) in (SE3) is approximated by

X(t)≈ Y0

(
C∗3eλ∗1t +C∗4eλ∗2t

)
=−Y0

pY X

q
e−qt +Y0

(
pY X

pXY
+

pY X

q

)
e−pXY t .

At a first look, this expression indicates that the quiescent LSCs also show a bi-exponential decline. Although this is true,
the effect of the first decline is negligible. To see this, note that the last expression can be written as

X(t)≈ Y0
pY X

pXY

(
e−pXY t + ε2(e−pXY t − e−qt)

)
.

From this expression we see that the first decline is sensed only at order ε2, and it is also balanced with a slower de-
cline e−pXY t at the same order. Therefore, the leading order approximation (with respect to ε2) already provides a good
approximation, and we consider the approximation

X(t)≈ X∗(t) = Y0
pY X

pXY
e−pXY t . (SE10)

The corresponding approximation for the BCR-ABL1 levels of quiescent LSCs is

LX
MOD(t)≈ LX∗

MOD(t) = 100× X∗(t)
TX

= L0e−pXY t . (SE11)

S7 Relationship between the numbers of quiescent and proliferating LSCs after the second decline

From equations (SE8) and (SE10), we see that, after the first decline (i.e., for e−qt ≈ 0), the numbers of quiescent and
proliferating LSCs are approximated by

X(t)≈ Y0
pY X

pXY
e−pXY t and Y (t)≈= Y0

pY X

q
e−pXY t .

Thus, the ratio X(t)/Y (t) after the first decline is given approximately by X(t)/Y (t) ≈ q/pXY . Since α ≈ −q and
β ≈ −pXY , we can approximate the fraction q/pXY by α/β and also write the following approximation for t after the
first decline, X(t)/Y (t) ≈ α/β. Therefore, after the first decline the proportion quiescent/proliferating LSCs is equal to
q/pXY ≈ α/β and remains constant in the long-term.

S8 Threshold for optimal favorable reduction of TKI dose

In this section, we deduce an expression for the optimal favorable reduction fraction fOPT , equation (E5) in the Main Text.
We seek for a fraction of the standard dose which separates two types of behavior of the long-term treatment efficiency,
|β|, as shown in figure 2A and Online Supplementary Figure S3: for doses above fOPT , |β| is roughly constant, near the
original long-term treatment efficiency (green region in figure 2A), while for doses below fOPT , the value of |β| decreases
fast as the dose is reduced (red region in figure 2A).

We start by substituting pY X = ε1 pXY in the expression for β in (SE5), and expanding the result as power series of ε1,
obtaining

β =−pXY

(
1− ε1

pXY

q− pXY
+ ε

2
1

qp2
XY

(q− pXY )3 +O(ε3
1)

)
.
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The relative difference between the activation rate of quiescent LSCs, pXY , and the actual long-term treatment efficiency
|β| is

pXY −|β|
pXY

= ε1
pXY

q− pXY
+O(ε2

1). (SE12)

For all patients within our data-set, the individual parameters satisfy q > pXY , indicating that the net effect of TKI, cell
removal minus LSCs proliferation, q = eT KI − pY , is always larger than quiescent LSC activation, pXY . Therefore, the
relative difference in (SE12) is always positive, implicating that the maximally achievable long-term treatment efficiency
|β| equals pXY . For the original dose, the actual long-term treatment efficiency is already very near this maximum value.
Indeed, for the median patient in our data-set, (SE12) corresponds to a relative difference of only 1.6% with respect to
the maximum value. Therefore, an increase in the dose does not lead to a relevant increase in the long-term treatment
efficiency (Online Supplementary Figure S3). On the other hand, we seek for an optimal reduction in the dose for which
the new treatment efficiency is still very near the maximum pXY .

We first note that the relative difference (SE12) changes as the TKI dose changes. Indeed, substituting q = eT KI − pY ,
(SE12) rewrites as

pXY −|β|
pXY

= ε1
pXY

eT KI− pY − pXY
+O(ε2

1). (SE13)

Assuming a linear dose-response relationship (see section 9 “Pharmacokinetic modeling, model simplification, and re-
lationship between TKI-effect and TKI-dose” for a justification on the plausibility of such hypothesis), the TKI effect
eT KI is reduced to a fraction f · eT KI , when the dose is reduced by a fraction f . Therefore, the dependence of the relative
difference (SE13) as a function of the dose fraction f is written as

pXY −|β|
pXY

= ε1
pXY

f · eT KI− pY − pXY
+O(ε2

1). (SE14)

We focus on the first-order relative difference, i.e.,

pXY −|β|
pXY

≈ ε1u( f ),

where
u( f ) =

pXY

f · eT KI− pY − pXY
,

As the dose is reduced, the value of f decreases, and the denominator of u( f ) decreases. This leads to an increase
in u( f ) and, therefore, an increase in the first-order relative difference. The derivative of the function u( f ) satisfies
u′( f ) = −(eT KI/pXY )(u( f ))2. This relation implies that the rate of change in u is proportional to its square u2. Thus,
the condition u( f ) = 1 defines the threshold between a region of slow change in u (when u( f ) < 1), and a region of fast
change in u (when u( f )> 1). Thus, when u( f )> 1, the function u( f ) increases very fast as f decreases, and diverges to
+∞ when the value of f makes the denominator approaching zero. Consequently, we define the optimal threshold in the
dose reduction as the value fOPT such that

u( fOPT ) = 1.

For this choice, the first order relative difference is

pXY −|β|
pXY

≈ ε1u( fOPT ) = ε1.

Solving u( fOPT ) = 1 for fOPT , we find that the optimal reduction fraction is

fOPT =
pY +2pXY

eT KI
. (SE15)

From our estimates it follows that the optimal reduced dose within the patient cohort of 122 selected patients leads to a
minor decline in the treatment efficiency in the order of 3% (IQR [0.2%,8.8%]) (corresponding to 100× ε1%), while the
dose can potentially be reduced to 25% of the original dose (IQR [14%,39%]).

S9 Adaptive treatment optimization

Here, we present the deduction of formula (E6) in the Main Text, which expresses pY in terms of (α,β,A,B,B′, f ). First,
from equations (SE5) and (SE7), the intercept B can be approximated as

B = K2 = L0C2 ≈
pY X

q
L0. (SE16)
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This approximation is valid for the standard dose as well as for the reduced dose. In the latter case, with the reduction of
the dose to a fraction f ∈ [0,1] of original dose, the new parameters are e′T KI = f eT KI and q′ = e′T KI− pY , while the new
intercept B′ is

B′ ≈ pY X

q′
L0. (SE17)

Isolating q = eT KI− pY and q′ = f eT KI− pY in (SE16) and (SE17), we obtain the system:
eT KI− pY ≈

pXY

B
L0,

f eT KI− pY ≈
pXY

B′
L0.

(SE18)

with unknown parameters pY and eT KI . Indeed, for each patient, parameters B and L0 = A+B are observable from the
biexponential fit, while pXY can be calculated using (SE6). The new intercept B′ is obtained from the response observed
after a dose reduction to a fraction f of the original dose. Solving system (SE18) for pY and eT KI we obtain

pY ≈
pY X L0

1− f

(
f
B
− 1

B′

)
and eT KI ≈

pY X L0

1− f

(
1
B
− 1

B′

)
.

Now, the values of pY and eT KI can be used in expression (SE15) and the optimal dose reduction fraction fOPT can be
calculated for each individual patient.

For clinical applicability, we would like to have an expression depending only on the phenomenological parameters. Using
approximations B≈ (pY X/q)L0 and |α| ≈ q, the expression for pY can be simplified as

pY ≈
q

1− f
pY X L0

q

(
f
B
− 1

B′

)
≈ |α| B

1− f

(
f
B
− 1

B′

)
. (SE19)

The optimal reduction fraction fOPT can also be expressed only in terms of the phenomenological parameters. Indeed,
substituting the above expression for pY and approximations |α| ≈ q and |β| ≈ pXY in equation (SE15), we obtain

fOPT =
pY +2pXY

pY +q
≈

B
1− f

(
f
B
− 1

B′

)
+2
∣∣∣∣βα
∣∣∣∣

B
1− f

(
f
B
− 1

B′

)
+1

. (SE20)

S10 Pharmacokinetic modeling, model simplification, and relationship between TKI-effect and TKI-dose

In this section, we present an enhanced model of TKI treatment encompassing pharmacokinetic aspects, such as TKI
daily intake and decay. Then, we compare this more complex model to the simplified model used throughout our paper
(equations E2-E4), which considers a constant mean TKI concentration over the time. We show how the detailed model
is an extension of the simplified model and demonstrate that the results of the simplified model agree with those of the
enhanced model. Finally, we show that, under reasonable assumptions, a dose reduction by a fraction f is equivalent to a
reduction in the TKI-effect eT KI by the same fraction f .

We start considering the following extension of our ODE model, in which we explicitly consider the plasma concentration
I(t) of the TKI:

dX
dt

=−pXY X + pY XY

dY
dt

= pXY X− pY XY + pYY − kT KIIY

dW
dt

= pWY − rWW

dI
dt

= v(t)− τI

(SE21)

The cytotoxic effect of the TKI is described by the term−kT KIIY , for which we assume a linear drug-response relationship
within a therapeutic window. This follows the mass action law, where a change in the abundance of TKI leads to a
proportional change in the number of proliferating LSCs targeted by the TKI. This choice reflects the log-kill hypothesis
or the fractional cell kill hypothesis, stating that a given fixed amount of drug (TKI) kills a fixed fraction of proliferating
cells (LSCs), independent of the absolute number of cells.
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The administration of TKI is modeled by the time-dependent function v(t), and the TKI decay is described by the param-
eter τ, i.e., the half-life of the TKI is given by T1/2 = log(2)/τ. For both TKI imatinib and dasatinib, CML patients take
one dose ν per day (for imatinib, the common daily dose is νim = 400 mg; for dasatinib, the standard dose is νda = 100
mg). This daily-dose scheduling can be described by

v(t) =
nd

∑
i=1

νδ(t− ti) (SE22)

where δ(t− ti) is the Dirac-Delta function, representing one single daily drug intake at time ti = i/30, where i refers to the
i-th day of treatment over the course of nd days of treatment (the factor 1/30 in ti accounts for the fact that the unit time
in the model is set to 1 month).

The differential equation for the drug concentration I(t) is decoupled from the other equations in system (SE21) and can
be solved with standard methods. The solution is

I(t) =
nd

∑
i=1

νe−τ(t−ti)u(t− ti),

where u(t− ti) is the unit step function. The behavior of I(t) in the scale of one month is shown in Figures S9 and S10,
with parameters values corresponding to pharmacokinetic properties of imatinib (half-life of 19 hours [3]). For dasatinib
(half-life of 4 hours [4]), the results are similar and not shown.

In comparison with the extended model defined by equations (SE21) and (SE22), the simplified ODE model (equations
(E2-E4) in the Main Text) assumes a constant, mean concentration of TKI over the time, as shown in Online Supplemen-
tary Figure S9. In order to express this mean value in terms of the pharmacokinetic parameters, we reason as follows. The
description of daily doses can be approximated by a constant drug administration v(t) as

v(t) = νM,

where νM = 30ν is the monthly TKI-dose (only considering the time range before treatment reduction or cessation). The
solution for this simplified version of v(t) is

I(t) =
νM

τ
(1− e−τt),

which quickly reaches the steady-state concentration

I(t)≈ IE =
νM

τ
=

30ν

τ

(see Online Supplementary Figure S9A). Therefore, in the simplified model, the drug concentration in the plasma is
approximated by the constant mean value

IE =
30ν

τ
.

Substituting this constant level in (SE21), we can disregard the equation for I(t), and the new system is equivalent to our
original model (first three equations in (SE21)), with the TKI-effect parameter set to

eT KI =
30kT KI

τ
ν.

From our considerations we conclude that the TKI-effect parameter eT KI in our simpler model is proportional to the daily
TKI-dose ν, i.e., eT KI = κν, where κ = 30kT KI/τ. Therefore, a dose reduction by a fraction f translates into a reduction
in the TKI-effect eT KI by the same fraction.

As can be seen in Online Supplementary Figure S9B and D, there is no visible difference between the solutions of the
simpler model (assuming a constant mean level of TKI in the plasma) in comparison with the detailed model (explicitly
considering the pharmacokinetics of TKI). On the contrary, the same behavior is observed for the decay of LSC population,
thereby ensuring us that the simpler model is sufficient for deriving clinical predictions.

S11 Threshold for inhibitory concentrations of TKI

TKI plasma concentrations need a to reach a minimal threshold for effective inhibitory activity [5]. With 400mg once-
daily administration, imatinib plasma concentration reaches a value of 2.6 +/- 0.8 microg/mL at peak level and 1.2 +/-
0.8 microg/mL at trough level, exceeding the threshold of 0.5 microg/mL for in vitro inhibition [5]. We can include
this pharmacokinetic consideration in our ODE model by noting that this threshold corresponds to 19.2% of the peak
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concentration. Therefore, we conclude that the TKI effect eT KI depends on the TKI abundance, encompassing such
threshold Imin. We assume

êT KI(I(t)) =
{

eT KI , if I(t)> Imin
0, if I(t)< Imin

.

With this additional assumption, the simulation results for imatinib are also indistinguishably from the simplified model
when the dose stays above 28.8% of the original dose. This approximate threshold indicates a substantial range for
potential dose reductions, although we note that the above numbers for TKI peak and threshold concentrations are obtained
from in vitro experiments and might require further verification. However, this estimate supports the notion that half-dose
reductions appear within the safe regimen for which we do not expect sub-inhibitory TKI concentrations. However, more
studies are needed to estimate the precise pharmacological limit, which may also vary between different patients.

S12 Analysis of emergence of resistance

In this section, we quantify the probability of generating resistance mutations due to increased proliferation in the reduced
dose scenarios compared to the standard dose scenario. We assume that this probability is proportional to the accumulated
number of LSCs division over time.

The number of LSCs divisions between times t0 and tF is described by the integral of the proliferation term pYY (t) over
time, i.e.,

LSCD(t0, tF) =
∫ tF

t0
pYY (t)dt.

Therefore, the probability of generating a resistance mutation between times t0 and tF , denoted by PR(t0, tF), is propor-
tional to LSCD(t0, tF). For the median parameters in the untreated growth phase (eT KI = 0, no treatment; initial conditions
X(0) = 1,Y (0) = 0,W (0) = 0), the latency time is T = 6.45 years to reach the median diagnosis level L0 = 100%. During
this period, the number of LSC divisions adds to LSCD(0,T ) = 1.00401×106. In the treatment scenario (eT KI > 0, initial
conditions at t = 0 corresponding to L0 = 100%), the number of LSCs divisions after 6 years under standard therapy is
LSCD(0,72m) = 169901 divisions, while most of these divisions (98.4%) occur within the first six months of treatment
when the leukemic burden is still large. These results also indicate that the number of LSC division during a 6 year
treatment period accounts for only 14.5% of all LSCs divisions occurring since leukemia initiation (for the median patient
within our cohort).

Now, we calculate the number of additional LSC divisions resulting from a reduced dose applied after initially treating
with the standard therapy for the first 3 years. Online Supplementary Figure S10 indicates an additional 492 divisions for
the f = 50% reduction (1442 divisions for the f = 25% reduction). This increase accounts for only 0.29% ( f = 50%)
and 0.85% ( f = 25%), respectively, during a 6 year treatment scenario. The proportion is even more marginal (0.04%
( f = 50%) and 0.12% ( f = 25%)) if the complete leukemic episode is considered.

S13 Alternative model formulation without LSCs deactivation

The estimated individual values of the LSC deactivation rate pY X are very low for almost all patients (Figure 1B) and
therefore, could potentially be zero. Considering this particular case, we can define an alternative model in which we set
pY X = 0. In this alternative formulation, we introduce a parameter for the initial number of quiescent LSCs X(0) = X0,
since in the original model this condition is X(0) = (pY X/pXY )Y0. Following the same approach as in Online Supplemen-
tary Text S2, we obtain a different analytical correspondence between the biphasic and the mechanistic model parameters.
In this alternative scenario, the formulas for α and β read (instead of formulas (SE5)):

α =−q, β =−pXY .

These exact solutions of the alternative model are identical to the approximate solutions of the model considering stem
cell deactivation. Thus, the interpretation that the second decline is limited by the activation of quiescent LSCs is still
valid. Although the model might appear simpler, the statistical approach for model fitting remains the same, because
we first find the values of the phenomenological parameters A,B,α,β and then use these values to calculate the model
parameters L0,q, pXY and pY X (or X0 in this alternative model). Therefore, the interpretation of the slopes is identical
to our approximate solution with the original model, and we can conclude that the same results for dose reduction are
expected for this alternative model formulation.
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Online Supplementary Table S1. Filter criteria for the patient cohort.
For the quantitative analysis we selected patient time courses according to the following criteria: (Filter 1) excluding
patients with less than 5 BCR-ABL1 measurements at different time points, which are insufficient for the fitting routine
for the bi-exponential decline; (Filter 2) excluding patients with a bi-exponential fit β > 0, corresponding to patients
with increasing BCR-ABL1 levels; (Filter 3) excluding patients with monophasic or inverted biphasic decline (β < α <
0); (Filter 4) excluding patients with any BCR-ABL1 measurements above 500%, indicating a pronounced non-linearity
between BCR-ABL1 abundance and tumor load. For comparison with the DESTINY cohort, we further excluded (Filter
5) patients treated with TKI for less than 36 months and (Filter 6) patients which were not below MR3 in the entire last
year of follow-up. *) From the 280 available patients, one could not be evaluated as no reasonable BCR-ABL1 levels
values were reported.

Online Supplementary Table S2. Robustness of model results with respect to the reliability of high BCR-ABL1
values.
We tested the robustness of our main quantitative conclusions with respect to the handling of high BCR-ABL1 values.
As such, we reran all selection steps, empirical data fitting and model simulations under the limitation that all BCR-
ABL1 values above 100% in the primary data are set to strictly 100%. The numerical analysis of the resulting n = 127
patients (n = 48 in IRIS and n = 79 in CML-IV; different numbers result from minor changes in filter steps 2 to 4, Online
Supplementary Table S1) revealed qualitatively and quantitatively similar results compared to the less restrictive, original
setting. This indicates a good robustness of our overall conclusions with respect to the reliability of high BCR-ABL1
values.
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Online Supplementary Figure S1. Individual patient BCR-ABL1 data and model exact and approximated solutions.
Individual treatment data (dots, triangles for undetectable values), i.e., BCR-ABL1 ratios, of each patient within the IRIS
and CML-IV cohorts, the corresponding bi-exponential fit, and the model’s exact solution (red). From the calculated
individual parameters, we predict the BCR-ABL1 levels of quiescent LSCs (blue) and model approximations for the BCR-
ABL1 levels of proliferating (orange) and quiescent (light blue) LSCs; compare equations SE8 and SE10 in Supplementary
Text.
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Online Supplementary Figure S1 continued
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Online Supplementary Figure S1 continued
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Online Supplementary Figure S1 continued
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Online Supplementary Figure S1 continued
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Online Supplementary Figure S1 continued
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Online Supplementary Figure S2. Comparison of exact and approximated solutions for relative and absolute cell
numbers.
Solid lines indicate exact solutions; dashed lines represent approximated solutions after accounting for the intrinsic scaling
between model parameters (equations (SE7,8,9,10) in Online Supplementary Text S6). Simulations are based on approxi-
mated median parameter values of available IRIS and CML-IV patients (see Online Supplementary Figure S1 and Online
Supplementary Table S1). A) Exact and approximated solutions in terms of BCR-ABL1 levels. The close correspondence
indicates that focusing on the dominating treatment effects (the effective TKI effect q = eT KI− pY during the initial slope
and the rate pXY during the second slope) is fully sufficient to reflect the overall treatment dynamics. The approximations
also reveal that quiescent LSCs follow a monophasic decline with slope β during the entire treatment, and that the fraction
of proliferating LSCs that remain after the first decline is approximately pY X/q. B) Assessing the model dynamics in
terms of absolute cell numbers reveals an identical correspondence between exact and approximated solutions. Further-
more, we highlight: (i) For each proliferating LSC, there are pW/rW = 106 differentiated LCs; this proportion remains
constant during the entire treatment. (ii) The initial number of quiescent LSCs at treatment start is a ratio pY X/pXY of
the number of proliferating LSCs, corresponding to approximately 1 quiescent for every 50 proliferative LSCs. (iii) The
fraction of proliferating LSCs that remain after the first slope is pY X/q, i.e. 0.1% of the original population, indicating a
reduction of 3 log-scales corresponding to a major molecular remission (MMR, MR3). (iv) After the massive reduction
in the abundance of proliferating LSCs, the proportion of quiescent/proliferative LSCs is inverted, and the number of
proliferative LSCs only accounts for a small fraction of the total LSC population. The ratio X/Y is approximated both
by q/pXY and α/β (see Online Supplementary Text S7), corresponding to approximately 20 quiescent LSCs for each
proliferative LSC, and remaining constant over the time.
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Online Supplementary Figure S3. The long-term treatment efficiency as a function of the TKI dose.
The long-term treatment efficiency (defined as the magnitude of slope β), plotted as a function of the TKI dose (black
line), is constant in a large interval encompassing both lower and higher doses as compared to the standard dose. See
Figure 2 and Online Supplementary Figures S4, S5 and S6 for model simulations of dose modifications corresponding to
the marked (vertical lines). Assuming an additional TKI-effect on the activation rate pXY leads to an alternative scenario
(brown line). In this case, the benefit of dose de-escalation is even better, while an impairment in the long-term efficiency
is expected for higher dose. A dose de-escalation decreases the inhibitory effects of TKI on quiescent cell activation,
thereby allowing more of these cells to become proliferating and then be targeted by TKI.
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Online Supplementary Figure S4. Response of total LSCs to full and reduced dose. Dynamics of all LSCs (pro-
liferating + quiescent; black) and of proliferating LSCs (red) in different dose scenarios of dose reduction. The vertical
axis indicates the percentage of cells with respect to the total number of stem cells, TX +TY (see Methods); the black line
corresponds values (X(t)+Y (t))/(TX +TY ) while the red line corresponds to values Y (t)/(TX +TY ).
A) Full dose scenario, corresponding to figure 1C and Online Supplementary Figure S2. At diagnosis, most of LSCs are
in the proliferative state. The 3-log reduction in this compartments during the first decline implies that, during the whole
long-term phase of treatment, most of the LSCs are in the quiescent state. Therefore, the long-term treatment efficiency
is bounded by the activation rate of quiescent LSCs, which leads to the slower secondary decline.
B,C) Half and optimal dose scenarios, corresponding to figures 2B and 2C, respectively. The transient increase in the
proliferating LSCs compartment represent a irrelevant/minor (B/C) change in the dynamics of the larger compartment
comprising all LSCs. Due to the log-scale effect, the differences between the dashed (reduced dose) and continuous (full
dose) lines are more prominent for lower values of the tumor load, i.e., in for the red curves.
D) Unfavorable reduction scenario, corresponding to figure 2D. The reduced dose is too low to prevent the growth of
proliferating LSCs, which increase in number and then become the major part of the overall LSCs compartment.
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Online Supplementary Figure S5. Model prediction for resumption of full dose five years after dose de-escalation.
Model simulation comprising three different treatment regimens: full dose for three years, followed by optimal dose
( f = 25%) for five years, followed full dose. The increased population of proliferating LSCs observed after dose de-
escalation (in comparison with full dose) is reduced to the full dose levels within six months after resumption, indicating
that the proliferating population of LSCs responses to dose modifications in the short-term, but then are again depleted at
a rate equal to the activation rate of quiescent LSCs.
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Online Supplementary Figure S6. Using CML latency times to estimate patient specific distributions of pY and
fOPT .
A) The CML latency time is defined as the time T between the emergence of the first leukemic cell and the disease
diagnosis. For each patient, using the patient specific parameters pXY , pY X , q and L0, and assuming a particular value of
pY , the latency time can be calculated by simulating equations (E2-E4) with eT KI = 0 and initial conditions X(0) = 1,
Y (0) = X(0) = 0 to determine the time T needed to reach an estimate of the tumor load at diagnosis (approximated by
the first BCR-ABL1 measurement, L0). The inverse problem can also be solved, i.e., given a certain value of the latency
time T , it is possible to find the value of pY such that the model predicts the given latency time. Using this approach, we
obtained patient specific distributions for pY and fOPT as follows.
B) Sampling of N = 10,000 values of T according to the population-based distribution of CML latency times derived by
[Radivoyevitch, T., et al., Blood, 2012]. The obtained values are then assumed to be the possible latency times T observed
within the patient-cohort.
C, D) For each patient, using the individual patient parameters q, pXY , pY X and L0, and the steps described in (A), we
calculated, for each value of the sampled latency times T , the corresponding value of pY . The union of all these values
results in the expected individual distributions of pY (C), reflecting a spectrum for the possible aggressiveness of the initial
leukemia. Then, for each of these values, we calculated (using equation (E6)) the corresponding values of fOPT , resulting
in a patient-individual distribution of values indicating the optimal dose reduction given a particular aggressiveness of the
leukemia (D).
E) From the estimated, patient-specific distribution of pY , we calculated the fraction of values of pY , which lead to loss
of MR3 within 1 year after de-escalation by 50%. This can be used as an estimate for the individual probability of loss of
MR3.
F) From the estimated, patient-specific distribution of fOPT , we calculated the fraction of values of fOPT below 0.5, which
can be used as an estimate for the individual probability of retaining the long-term treatment after de-escalation by 50%.
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Online Supplementary Figure S7. Predicted effect of dose reduction on long-term treatment efficiency.
For the shown simulation results, we assumed a population-based distribution of CML latency as described in [Radivoye-
vitch, T., et al., Blood, 2012]. A) The predicted percentage of patients which retain the long-term treatment efficiency
after a dose de-escalation to a fraction of the original dose is plotted as a function of the simulated reduced dose. For a
reduction by half (vertical line at 50%), the expected percentages are 90% and 81% for the IRIS and CML-IV data-sets,
respectively. B,C) Each dot represents an individual patient within the cohort of 122 selected patients (n = 47 in IRIS,
green dots; n = 75 in CML-IV, blue dots). For each patient we determined the risk of losing the long-term efficiency after
halving the dose (i.e. the probability that a 50% dose reduction leads to a less steep β slope than the standard dose) and
compared with their individual α/β slope ratio. The results predict that patients with slopes satisfying α/β > 15 have a
very low risk to lose long-term treatment efficiency under a 50% dose de-escalation.
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Online Supplementary Figure S8. Scenarios of dose modification.
Model simulations starting with modified doses (continuous lines) in comparison with standard dose (dashed lines). A)
the treatment starts with the optimal dose f = fOPT ; in this case, the slopes satisfy the relation α/β ≈ 2, which suggests
a criterion to classify patients according to their initial response, as either being “over-treated” (α/β� 2, which would
benefit from dose de-escalation) or “under-treated” (α/β < 2 or monophasic declines α/≈ β, which would benefit from
higher doses). B) treatment starting with escalated dose to f = 200%; the initial response is faster and deeper in compari-
son with the standard dose, which agrees with results from the RIGHT trial [Cortes, J.E., et al., J Clin Oncol, 2009], which
assessed the benefits of 800mg daily Imatinib in CML patients. However, the long-term treatment efficiency is predicted
to be the same as in standard dose.
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Online Supplementary Figure S9. Simulation results of an extended model explicitly considering TKI pharma-
cokinetics.
A,C) Simulation results showing the TKI concentration in different time intervals (A - first month of treatment, C - two
months around dose reduction to f = 25%) , using an extended model which explicitly considers the pharmacokinetics
of daily drug intake (gray line). The simplified model assumes a constant, mean value for the TKI concentration, corre-
sponding to continuous drug administration. B,D) Simulation results of the original and the extended model, showing the
evolution of tumor load under standard (B) and reduced dose (D) treatment scenarios. There is no visible difference in the
solution when using the different models, indicating that the simplified model represents a suitable approximation of the
more detailed, pharmacokinetic approach.
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Online Supplementary Figure S10. Accumulated number of LSCs divisions over time.
Simulation results showing the accumulated number of LSCs divisions after treatment initiation, considering different
dose reduction scenarios. During the first three years, the simulations assume that all scenarios use the same standard
dose. After this period, the number of LSCs divisions is marginally increased in the reduced doses scenarios.
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Online Supplementary Figure S11. Stochastic model simulations using a Gillespie algorithm.
We performed stochastic model simulations for the "mean patient" (see section 11 “Stochastic model simulations”). Sub-
figure A) shows the results of a single stochastic simulation, while the other subfigures present averages over 5 (B) , 10
(C) and 100 (D) independent simulations.
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