Development of a mathematical model to analyze and describe biphasic treatment responses from tyrosine kinase inhibitor (TKI) treated patients with chronic myeloid leukemia

The matematical model considers 3 leukemic cell types:

- Quiescent leukemic stem-cells (X)
- Proliferating leukemic stem-cells (Y)
- Differentiated leukemic cells (W)

 $p_{_{XY}}$ activation rate of quiescient LSCs $p_{_{YX}}$ activation rate of proliferating LSCs $p_{_{Y}}$ proliferation rate of proliferating LSCs $p_{_{W}}$ differentiation rate of proliferating LSCs $e_{_{T\!N\!I}}$ citotoxicity rate $r_{_{W}}$ mortality rate

The ratio α/β can be used to identify patients that are likely to benefit from dose reduction

 $\alpha/\beta > 15$ very likely retaining the original long-term treatment efficacy after a 50% dose reduction

 $\alpha/\beta < 2$ patients would benefit from dose escalation

 $\alpha/\beta \ge 2$ patients benefit from dose escalation

Dose halving should be considered as a long-term treatment option for well-responding chronic myeloid leukemia patients under continuing maintenance therapy with tyrosine kinase inhibitor