NLRP3 regulates platelet integrin α IIb β 3 outside-in signaling, hemostasis and arterial thrombosis Jianlin Qiao,^{1,2,3#} Xiaoqing Wu,^{1#} Qi Luo,^{1#} Guangyu Wei,¹ Mengdi Xu,^{1,2,3} Yulu Wu,¹ Yun Liu,¹ Xiaoqian Li,² Jie Zi,² Wen Ju,^{1,2,3} Lin Fu,^{1,2,3} Chong Chen,^{1,2,3} Qingyun Wu,^{1,2,3} Shengyun Zhu,^{1,2,3} Kunming Qi,² Depeng Li,² Zhenyu Li,^{1,2,3} Robert K. Andrews,⁴ Lingyu Zeng,^{1,3*} Elizabeth E. Gardiner^{5*} and Kailin Xu^{1,2,3*} ¹Blood Diseases Institute, Xuzhou Medical University, China; ²Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, China; ³Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China; ⁴Australian Centre for Blood Diseases, Monash University, Melbourne, Australia and ⁵ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia #JQ, XW and QL, contributed equally to this study. *LZ, EEG and KX contributed equally to this study. ©2018 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol..2018.191700 Received: February 20, 2018. Accepted: May 17, 2018. Pre-published: 24 May, 2018. Correspondence: lihmd@163.com #### **Detailed methods** #### **Electron microscopy** Washed platelets were fixed in 3% glutaraldehyde, dehydrated, immersion and embedded using Epon812 followed by ultrathin sectioned using LKB-V ultramicrotome and subsequent stained with lead citrate and uranyl acetate. Samples were analyzed in a transmission electron microscope (JEOL-1200EX) and images were acquired with a Morada G2 digital camera. #### Platelet spreading and adhesion Platelets (2 x 10^7 /ml) were placed on fibrinogen-coated glass coverslips (10 µg/ml fibrinogen, 4 °C overnight) at 37 °C for 90 min. After washing with PBS, platelets were fixed, permeabilized, stained with Alexa Fluor-546-labelled phalloidin and viewed by fluorescence microscopy (Nikon-80i) using an X100 oil objective. Surface coverage and the number of platelet adhesion on fibrinogen was quantified using Image J software. For some experiments, platelets were pre-treated with recombinant mouse IL-1 β (Bioworld Technology), anti-IL-1 β antibody (R&D Systems) or IL-1 receptor antagonist (IL-1RA, Sigma-Aldrich). #### **Clot retraction** Platelets (3 x 10^8 /ml) were supplemented with 2 mM Ca²⁺ and 0.5 mg/ml fibrinogen and clot retraction was initiated by thrombin (1 U/ml) stimulation at 37 °C. Images were captured every 15 min. #### **RNA** isolation Total RNA was isolated from 5 x 10^8 /ml using Trizol reagent. Briefly, platelets were resuspended in 1 ml Trizol reagent and transferred into diethylpyrocarbonate (DEPC)-treated tubes followed by serial purification through addition of chloroform and precipitation by isopropyl alcohol. Total RNA was harvested by centrifugation at 15,000 x g for 10 min at 4 $^{\circ}$ C and then washed with 75% (v/v) ethanol. Isolated total RNA was resuspended in 50 μ l DEPC-treated sterilized water. RNA was quantified by measuring the absorbance of RNA at 260 nm on a spectrophotometer. ### **Supporting Information** **Movie S1:** Platelet adhesion/thrombus formation in response to arterial injury in wild-type mice receiving infusion of wild-type platelets. **Movie S2:** Platelet adhesion/thrombus formation in response to arterial injury in wild-type mice receiving infusion of *NLRP3*^{-/-} platelets. ## **Supplementary Figures** **Figure S1. Platelet count.** Platelet number was assessed before and after anti-GPIIb antibody injection, and after platelet infusion (mean \pm SE, n = 3). Figure S2. Platelet spreading on immobilized fibrinogen. Platelets were isolated from wild-type (WT) or $NLRP3^{-/-}$ mice and allowed to adhere and spread on immobilized fibrinogen in the absence or presence of apyrase (1 U/ml) or ADP (10 μ M) for 90 min. Representative of three independent experiments were shown (mean \pm SD, n = 3). Compared with WT, **P < 0.01, ns: not significant. **Figure S3. Defective platelet spreading after IL-1RA treatment.** Platelets were isolated from WT or *NLRP3*^{-/-} mice and pretreated with recombinant IL-1R antagonist (IL-1RA) (100 ng/ml) for 5 min followed by spreading on immobilized fibrinogen in the presence or absence of 10 ng/ml IL-1β. Images (X100) are representative of three independent experiments. Compared with WT, ***P < 0.001. (Scale bar = 20 μm) Figure S4. Impaired clot retraction of platelets treated with IL-1RA. Washed platelets from WT or $NLRP3^{-/-}$ mice were treated with IL-1RA (100 ng/ml) for 5 min followed by initiation of clot retraction after stimulated by 1 U/ml thrombin in the presence or absence of IL-1 β (10 ng/ml). Images were take across 120 min and are represented as means from three independent experiments (n = 3). Compared with WT+IL-1RA or NLRP3^{-/-}+IL-1RA+IL-1 β , *P < 0.05, **P < 0.01. Figure S5. Phosphorylation of c-Src, Syk and PLC γ 2 in platelets after GPVI engagement. Washed mouse platelets were treated with the GPVI-specific agonist, CRP at 10 μ g/ml for 10 min (mean \pm SD, n = 3) followed by western blot analysis of the phosphorylation of c-Src, Syk and PLC γ 2. The phosphorylation level was quantified using Image J software and presented as fold change relative to phosphorylation level without stimulation.