Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States Anthony R. Mato,¹ Meghan Thompson,² John N. Allan,³ Danielle M. Brander,⁴ John M. Pagel,⁵ Chaitra S. Ujjani,⁶ Brian T. Hill,⁷ Nicole Lamanna,⁸ Frederick Lansigan,⁹ Ryan Jacobs,¹⁰ Mazyar Shadman,¹¹ Alan P. Skarbnik,¹² Jeffrey J. Pu,¹³ Paul M. Barr,¹⁴ Alison R. Sehgal,¹⁵ Bruce D. Cheson,⁶ Clive S. Zent,¹⁴ Hande H. Tuncer,¹⁶ Stephen J. Schuster,² Peter V. Pickens,¹⁷ Nirav N. Shah,¹⁸ Andre Goy,¹² Allison M. Winter,⁷ Christine Garcia,¹⁵ Kaitlin Kennard,² Krista Isaac,¹⁹ Colleen Dorsey,² Lisa M. Gashonia,² Arun K. Singavi,¹⁸ Lindsey E. Roeker,¹ Andrew Zelenetz,¹ Annalynn Williams,¹⁴ Christina Howlett,¹² Hanna Weissbrot,⁸ Naveed Ali,¹⁷ Sirin Khajavian,¹¹ Andrea Sitlinger,⁴ Eve Tranchito,⁷ Joanna Rhodes,² Joshua Felsenfeld,³ Neil Bailey,⁵ Bhavisha Patel,²⁰ Timothy F. Burns,⁹ Melissa Yacur,¹³ Mansi Malhotra,¹⁶ Jakub Svoboda,² Richard R. Furman³ and Chadi Nabhan²¹ ARM and MT contributed equally to this work. ¹CLL Program, Leukemia Service, Division of Hematologic Oncology, Department of Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; ²Center for CLL, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA; ³New York Presbyterian & Weill Cornell, NY; ⁴Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC; ⁵Center for Blood Disorders and Stem Cell Transplantation, Swedish Cancer Institute, Seattle, WA; ⁶Georgetown University Hospital Lombardi Comprehensive Cancer Center, Washington, DC; ⁷Taussig Cancer Institute, Cleveland Clinic Foundation, OH; ⁸Columbia University Medical Center, New York, NY; ⁹Dartmouth-Hitchcock Medical Center, Lebanon, NH; ¹⁰Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Carolinas Healthcare System, Charlotte, NC; ¹¹University of Washington/Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, WA; ¹²John Theurer Cancer Center, Hackensack Meridian Health, NJ; ¹³Penn State Health, Hershey, PA; ¹⁴Wilmot Cancer Institute Division of Hematology/Oncology, University of Rochester Medical Center, NY; ¹⁵University of Pittsburgh Medical Center, PA; ¹⁶Tufts Medical Center, Boston, MA; ¹⁷Abington Hem. Onc. Assoc., Inc., Willow Grove, PA; ¹⁸Division of Hematology & Oncology, Medical College of Wisconsin, Brookfield, WI; ¹⁹Internal Medicine, Lankenau Medical Center, Wynnewood, PA; ²⁰Washington Hospital Center, DC and ²¹Cardinal Health, Dublin, OH, USA ©2018 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2018.193615 Received: March 17, 2018. Accepted: June 5, 2018. Pre-published: June 7, 2018. Correspondence: matoa@mskcc.org ## Supplemental Data. ## **Supplemental Table 1. Venetoclax dosing and select toxicities** | Maximum dose achieved during ramp-up | 85.1% achieved 400 mg (n=120/141) | | | |--------------------------------------|---|--|--| | Stable dose following ramp-up | 75.2% achieved 400 mg (n=103/137) | | | | Dose interruptions | 29.6% required >1 dose interruption | | | | | (n=40/135) | | | | Dose reductions | 20.5% required ≥1 dose reduction (n=24/117) | | | | Neutropenia (ANC<1000) | 47.4% (n=65/137) | | | | Thrombocytopenia (platelets <50,000) | 36.0% (n=49/136) | | | | Diarrhea (>7 bowel movements/day) | 7.3% (n=10/138) | | | | Neutropenic fever | 11.6% (n=16/138) | | | | TLS (laboratory and clinical) | 12.2% (n=17/139) | | | # Supplemental Table 2. Hospitalization during dose escalation | Number of hospitalization | Low risk
N=58 | | Intermediate risk
N=48 | | High risk
N=25 | | |---------------------------|------------------|----|---------------------------|----|-------------------|---| | | % | n | % | n | % | n | | 0 | 34.5% | 20 | 14.6% | 7 | 0 | 0 | | 1 | 20.7% | 12 | 29.2% | 14 | 12.0% | 3 | | 2 | 25.9% | 15 | 41.7% | 20 | 32.0% | 8 | | 3 | 5.2% | 3 | 6.3% | 3 | 20.0% | 5 | | 4 | 5.2% | 3 | 4.2% | 2 | 4.0% | 1 | | 5 | 8.6% | 5 | 4.2% | 2 | 32.0% | 8 | ### Supplemental Table 3. Second and third treatments following venetoclax ### Second treatment after venetoclax and response: n=7 patients Allogeneic SCT: CRHyperCVAD: PD • Venetoclax + ibrutinib + Obinutuzumab: PD • Ibrutinib + venetoclax: PD CAR + ibrutinib: PDPI3K inhibitor: PD • Other: SD ## Third treatment after venetoclax and response n=5 patients • CAR-T (2): 1 SD, 1 CR • Venetoclax + ibrutinib + rituximab: SD R-CHOP: PDOther: PD **Supplemental Figure 1. Overall survival by TP53 status.** OS is similar for patients with intact *TP53* and patients with *TP53* interruption, either *TP53* mutation or del(17p).