Automated decision tree to evaluate genetic
abnormalities when determining prognostic risk in
acute myeloid leukemia

Acute myeloid leukemia (AML) is a heterogeneous dis-
ease characterized by multiple genetic mutations and
cytogenetic abnormalities.”® Our understanding of AML
pathobiology has improved significantly in recent
decades, including the ability to predict which patients
have a high probability of relapse after chemotherapy.
The European LeukemiaNet (ELN) developed guidelines,’
which were revised in 2017,° to guide physicians’ deci-
sions as to how to treat and manage AML. However,

these guidelines require molecular tests that are not rou-
tinely performed at all medical centers,”” limiting their
broad applicability, and the complex pattern of co-occur-
rence among prognostic abnormalities is poorly under-
stood. We created an automated decision tree to stratify
patients into prognostic risk categories according to the
ELN guidelines. We evaluated 1682 patient records from
three datasets, conducting a detailed analysis of the co-
occurrence of mutations and karyotypic abnormalities
and determining the prognostic impact of each test result
on accurately categorizing patients. Our results have
implications not only in understanding the real-world
distribution of ELN-defined prognostic abnormalities, but
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Figure 1. Experimental design to determine the impact of genetic mutation co-occurrence on prognostic risk in acute myeloid leukemia (AML). Patient infor-
mation from three AML datasets were combined and mutation status and karyotype were extracted. These records were analyzed using an automated script
that classified each patient based on their European LeukemiaNet (ELN) prognostic risk score, and the prognostic impact of each genetic test was evaluated.
*“Other abnormalities” is defined as the presence of one or two abnormalities. **“Complex karyotype” is defined as the presence of three or more abnormal-

ities.
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also in categorizing patients based on incomplete data.

The ELN guidelines stratify patients into three prog-
nostic risk categories (Favorable, Intermediate, and
Adverse) by combining the presence of karyotypic abnor-
malities with genetic mutations (in FLT3, NPM1, CEBPA,
TP53, RUNX1, and ASXL1). To understand the impact of
genetic abnormality co-occurrence on prognostic risk, we
combined data from three large AML patient datasets
(n=1682 patients): the German-Austrian AML Study
Group (AMLSG) cohort (n=1384),** The Cancer Genome
Atlas (n=193),! and the Beat AML Wave One dataset
(n=105) (Figure 1). A complete description of the meth-
ods of data analysis, including a comprehensive R
Markdown file, is available on GitHub (https://github.com/
WatanabeSmith/AML_ELN_PrognosticRiskClassification)
and in Omnline Supplementary Methods. We filtered out
entries without complete karyotype and mutation data,
including karyotypes that did not follow standardized
nomenclature.” The presence or absence of mutations
were extracted from these datasets. We extracted prog-
nostically significant cytogenetic abnormalities, along
with complex and monosomal karyotypes, using regular
expressions and an automated abnormality calculator.
The complete dataset is available in Online Supplementary
Table S1.
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To evaluate the pattern of mutational co-occurrence in
these patients, we divided the prognostic risk factors by
those originating either from cytogenetic testing or gene
mutation testing. We subdivided the patient karyotypes
into four groups: Favorable, Intermediate, and Adverse
(all based on the presence of prognostic cytogenetic
abnormalities alone), and Normal (which contain no
abnormalities). We sorted patients within each karyotype
subdivision by  the  presence of adverse
TP53/RUNX1/ASXL1 mutations, and the combined pres-
ence or absence of NPM1, FLT3-ITD, and CEBPA muta-
tions (Figure 2A). We confirmed that the co-occurrence
patterns from each dataset closely matched one another
(Online Supplementary Figure S1A-C).

Overall, we observed that NPM1, FLT3-ITD, and
CEBPA mutations are enriched in a Normal karyotype
background, especially NPA1 and CEBPA, highlighting
their value in providing prognostic information in cytoge-
netically normal AML. In addition, TP53 mutations, in
contrast to mutations in RUNX1 and ASXL1, more fre-
quently co-occur with complex karyotypes and other
adverse-risk markers (Figure 2B). Therefore, within the
context of broadly assigning prognostic risk to AML
patients, TP53 mutation status offers little additional
prognostic information besides that already provided by
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Figure 2. Mutational co-occurrence within cytogenetic prognostic risk categories in 1682 acute myeloid leukemia patients. Patients were grouped into four
categories according to their karyotype: Adverse, Intermediate, or Favorable (which contain abnormalities that categorize them accordingly, based on the 2017
European LeukemiaNet guidelines); and Normal (which contains no abnormalities). (A) Patients were categorized as having TP53, RUNX1, or ASXL1 mutations,
and, for the remaining patients, subdivided by sequential presence or absence of NPM1 mutations, FLT3-ITD, and CEBPA mutations. The area of each circle is
proportional to the number of patients within that category. (B) The frequency of TP53, RUNX1, and ASXL1 was tabulated across different karyotype risk cate-
gories. Proportional Venn diagrams were drawn showing the overlap between the presence of complex karyotype, an adverse risk gene mutation, and all other

adverse cytogenetic abnormalities.
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cytogenetic testing. Notably, there are very few patients
with adverse/intermediate risk mutations and favorable
karyotypic abnormalities, who, according to the ELN
conventional care regimens for AML, would normally go

categories, we created an automated decision tree based
on the newly published ELN guidelines (Figure 3A). It
sequentially processes mutation and cytogenetic data,
and returns the corresponding Favorable, Intermediate,
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Figure 3. Automated decision tree determines that genetic abnormalities have different prognostic significance individually and sequentially in acute myeloid
leukemia patients. (A) Overview of automated decision tree to determine acute myeloid leukemia prognostic risk. After automatically identifying the prognosti-
cally significant karyotypic abnormalities, the decision tree returns the assigned prognostic risk category based on the hierarchy of abnormalities described in
the European LeukemiaNet (ELN) guidelines (see Online Supplementary Methods). (B) Prognostic impact of individual genetic abnormalities, as measured by
the omission of data from each of the seven prognostically significant genetic test and the assignment of patients into prognostic risk categories. k: karyotype;
f: FLT3-ITD; n: NPM1; c: CEBPA; p: TP53; r: RUNX1; a: ASXL1. (C) Sequential analysis of every possible arrangement of the genetic tests to best determine overall
prognostic risk. To mimic an unknown test result, each patient was considered to be wild type for gene mutations and have normal karyotype. For each test in
a particular sequence, the prognostic risk category was calculated after successively adding in the test results, and the percentage of patients with a correctly
called prognostic risk was recorded. Every possible test sequence (5040 total) was graphed and the optimized sequence to identify patients with favorable
(green), intermediate (yellow and dark yellow), and adverse (red) risk were labeled. For all three categories, the optimized sequence began with karyotype, which
is labeled in black. (D-F) The sequential analysis for all possible arrangement of tests to best identify patients with (D) favorable, (E) intermediate, and (F)
adverse prognostic risk. For these sequences, the percentage of correctly called prognostic risk patients was normalized due to the differences in population
size across categories.
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based on separate ELN guidelines."”) Notably, the deci-
sion tree does not consider FLT3-ITD allele ratio (FLT3-
ITD"" ys. FLT3-ITD"") or biallelic CEBPA mutations
because those data were not available for many of the
patient records (see Ouline Supplementary Methods).

To understand the significance of each test (NPAI1,
FLT3-ITD, CEBPA, TP53, RUNX1, ASXL1, and cytogenet-
ics) in assigning prognostic risk category, we analyzed
our dataset using the decision tree while selectively cen-
soring the presence of individual mutations or all kary-
otypic abnormalities. Censored test results were assumed
to be wild-type or cytogenetically normal, simulating an
unknown test result. Patients were assigned ELN risk cat-
egories based on incomplete data from all possible com-
binations of genetic test results. These risk categories
were compared to the actual risk categories based on
complete information to determine the accuracy of cate-
gorizing with partial information (Figure 3B). We similar-
ly censored test results in groups that might have more
clinical relevance (e.g. all adverse mutations considered at
once, simulating results from a mutation panel) (Online
Supplementary Figure S2).

Karyotype is the most informative single test, as
expected,' although 72% of patients can still be correctly
categorized without cytogenetic information, using only
the mutation tests. In most cases, a combination of
NPM1 mutational and FLT3-ITD status are the next most
impactful tests. Omitting NPAI1 or FLT3-ITD results has
a similar prognostic impact, but the type of misclassifica-
tion shifts from incorrectly categorizing favorable-risk
patients to incorrectly categorizing intermediate-risk
patients, respectively. In addition, CEBPA and RUNX1
mutations each provide significant improvements in clas-
sifying favorable- and adverse-risk patients, respectively,
while ASXL1 and TP53 mutations rarely impact prognos-
tic categorization. Although most genetic mutation tests
in these guidelines can be combined in a single mutation-
al panel (greatly decreasing the cost of detecting muta-
tions in additional genes), NP/1 mutations and FLT3-
ITDs are identified by PCR amplification and electro-
pherogram, respectively, requiring separate tests and
equipment.

Finally, we determined the optimal sequence of the
seven tests required for ELN risk classification, in which
the next test in the sequence results in the greatest
increase in classification accuracy. Each genetic test was
evaluated on its ability to classify patients relative to a
single risk category (e.g. call patients correctly as
Favorable or simply Not Favorable) or in all categories
using balanced accuracy (to account for differences in
population size) or overall accuracy, respectively. We dis-
played all 5040 possible sequences for the overall classi-
fication and for each risk category, highlighting the opti-
mum sequence (Figure 3C-F and Ownline Supplementary
Table S2).

While the test with the greatest impact on prognosis is
consistently karyotype, the test with the second biggest
impact varies widely depending on risk categories.
Favorable-risk patients can be identified with 95% accu-
racy with the addition of NPAM1 and FLT3-ITD, and
99.9% accuracy with the further addition of CEBPA, sug-
gesting that significant prognostic impact can be achieved
from relatively little information or despite missing infor-
mation. For intermediate prognostic risk, there were two
optimized sequences: one (Intermediate_R) with RUNX1
as the second test, resulting in more correctly classified
patients only after that second test, and another
(Intermediate) with FLT3-ITD and NPM1 as the second

and third tests, resulting in more correctly classified
patients after that third test (since NP/1 mutations only
confer Favorable risk in patients without FLT3-ITD).
Adverse risk is 95% determined by karyotype and
RUNX1 mutation status, demonstrating the significance
and prognostic impact of RUNX1 over other mutational
tests. The optimal overall sequence closely resembles
that of intermediate risk and highlights the minimal
impact of ASXL1 and TP53 on overall ELN risk classifica-
tion. Because the incidence of TP53 and ASXL{ muta-
tions increases with age,” we separated our dataset into
younger (<60 years old; n=1311) and older (=60; n=371)
patients and evaluated the difference in the prognostic
significance of those mutations between both subgroups.
We found that the difference in optimized sequences
between subgroups was only minimal, and the propor-
tion of patients incorrectly classified as a result of missing
TP53 and ASXL{1 mutation data was only nominally
increased in older patients (Online Supplementary Figure
S3 and Ouline Supplementary Methods).

Overall, our automated decision tree has potential
applications outside of this investigation. While there are
a multitude of clinical or genetic factors outside of the
ELN guidelines that have prognostic significance, we
focused only on the genetic abnormalities described in
the guidelines. The decision tree, however, does allow
other researchers to interrogate how additional factors
are distributed across the prognostic risk categories.

Moreover, while novel AML treatment strategies will
probably include comprehensive mutation testing upon
diagnosis, current treatment guidelines remain hampered
by financial and technical challenges. This is especially
true in low- and middle-income countries (LMIC), where
prognostic classification is often made in the presence of
incomplete data. A recent Brazilian study assessing the
relevance of the 2008 ELN guidelines in LMIC found that
26% of AML patients in their cohort were randomly
missing cytogenetic or complete mutational data.” This
approach could also enable clinicians and healthcare
providers in LMIC to evaluate and customize their diag-
nostic testing depending on the availability of resources
and the individual circumstances of each patient. Our
analysis enables data-driven decision-making by provid-
ing a framework for understanding which genetic fea-
tures hold the most weight in prognostication given their
relative prevalence and co-occurrence in real-world AML
datasets. Accordingly, we have made all of our program-
ming scripts and datasets publicly available at
hutps://github.com/WatanabeSmith/AML_ELN_PrognosticRis
kClassification to encourage further research.

Ultimately, AML prognostic risk involves a constella-
tion of abnormalities, each one carrying more or less
weight depending on the abnormalities with which it co-
occurs. This analysis provides an important first step in
applying this understanding to the newly revised ELN
guidelines for AML.
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