Molecular genetic characterization of myeloid/ lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2

Constance Baer, Verena Muehlbacher, Wolfgang Kern, Claudia Haferlach and Torsten Haferlach

MLL Munich Leukemia Laboratory, Germany Correspondence: constance.baer@mll.com

doi:10.3324/haematol.2017.187302

Supplemental Material

Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of *PDGFRA*, *PDGFRB*, *FGFR1* or *PCM1-JAK2*

Constance Baer, Verena Muehlbacher, Wolfgang Kern, Claudia Haferlach, Torsten Haferlach

	200504	220522	50554					
total cohort (n=)	35	13	6	РСМ1-JAK2 7				
sex (male/female)	33/2	12/1	5/1	6/1				
age in years, median [range]	49 [23-76]	52 [33-70]	60 [48-74]	61 [49-78]				
rearrangement type	FIP1L1-PDGFRA (n=34) BCR-PDGFRA (n=1)	ETV6-PDGFRA (n=7) EBF1-PDGFRB (n=1) TNIP1-PDGFRB (n=1) CCDC88C-PDGFRB (n=1) unknown (n=3)	ZMYM2-FGFR1 (n=4) BCR-FGFR1 (n=1) unknown (n=1)	<i>PCM1-JAK2</i> (n=7)				
detection method for rearrangement								
RT-PCR	I-PCR 35 9 5 7							
FISH	21	11	6	7				
chromosome banding	x	6	6	7				
targeted fusion panel		2						

Table S1: Patient characteristics. All known rearrangements were detected by reverse transcriptase PCR (RT-PCR). If possible, FISH and chromosome banding analysis was performed, too.¹⁻⁶ The *CCDC88C-PDGFRB* rearrangement was resolved unsing TruSight RNA Fusion Panel (Illumina, San Diego, CA).⁷ Four aberrations are listed as unknown. By FISH involvement of *PDGFRB* and *FGFR1* were detected using break-apart probes.

7. Stengel A, Nadarajah N, Haferlach T, Dicker F, Kern W, Meggendorfer M, et al. Detection of recurrent and of novel fusion transcripts in myeloid malignancies by targeted RNA Sequencing. *Leukemia*. 2018 Feb 26. [Epub ahead of print].

^{1.} Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. *N Engl J Med* 2003; **348**: 1201-1214.

^{2.} Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. *N Engl J Med* 2002; **347**: 481-487.

^{3.} Reiter A, Sohal J, Kulkarni S, Chase A, Macdonald DH, Aguiar RC, et al. Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. *Blood* 1998; **92**: 1735-1742.

^{4.} Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. *N Engl J Med* 2014; **371**: 1005-1015.

^{5.} Demiroglu A, Steer EJ, Heath C, Taylor K, Bentley M, Allen SL, et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. *Blood* 2001; **98**: 3778-3783.

Patterer V, Schnittger S, Kern W, Haferlach T, Haferlach C. Hematologic malignancies with PCM1-JAK2 gene fusion share characteristics with myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, and FGFR1. *Ann Hematol* 2013; 92: 759-769.

Table S2

Final diagnosis at time	Fusion	Gender	Age in	WBC	Platelets	Hemoglobin	PB Fos (%)	Mutation
of routine assessment*	rasion	Gender	years	[x10 ⁹ /L]	[x 10 ⁹ /L]	[g/dL]	T B E03 (70)	matation
AL	PDGFRB	m	52	N.A.	N.A.	N.A.	N.A.	
ALL	PDGFRB	m	33	6.90	23	7.7	N.A.	У
ALL	FGFR1	m	68	56.20	20	15.9	4	
AML	PCM1-JAK2	m	61	17.80	90	12.7	5	
AML	PDGFRB	f	69	5.60	60	9.4	2	у
AML	PCM1-JAK2	m	73	6.59	108	8.1	8	
CEL	PDGFRA	m	40	N.A.	N.A.	N.A.	N.A.	
HES	PDGFRA	m	23	28.30	76	8.8	N.A.	
HES	PDGFRA	m	24	55.70	53	14	74	
HES	PDGFRA	m	31	14.00	185	13.4	71	
HES	PDGFRA	m	33	41.53	135	10.4	62	
HES	PDGFRA	m	34	15.40	118	12.2	39	
HES	PDGFRA	m	39	8.30	141	11.4	16	v
HES	PDGFRA	m	39	9.86	157	8.9	19	
HES	PDGFRA	m	39	N A	N A	N A	NA	
HES	PDGERA	m	40	7.88	302	13.7	9	
HES	PDGERA	m	40	26.00	9/	10.0	70	
HES	PDGEDA	m	/1	20.00 8 80	220 220	15.3	51	
	PDGEDA	m	41	6.00	126	1/ 2	16	
		m	40	37 70	250	14.2	10	
	PDGERA	m	41	<u> </u>	194	14.0 NLA	47 N A	
	DOCEDA		41	0.00 NI A	104 NLA	IN.A.	IN.A.	
	DOCEDA		40	IN.A.	IN.A. 100	12 O	CO 24	
HES HES	PDGFRA	 	49	20.00	100	15.9	<u> </u>	
	PDGFRA		49	29.00	100	15.2	32	
HES	PDGFRA	m	50	25.50		9.5	34	
HES	PDGFRA	m	50	N.A.	N.A.	N.A.	67	
HES	PDGFRB	m	51	IN.A.	N.A.	N.A.	63	
HES	PDGFRA	m	53	20.00	81	11.8	53	
HES	PDGFRA	m f	55	10.91	148	12.3	60	
HES	PDGFRA	1	50	12.00	135	14.2	48	
HES	PDGFRA	m	57	14.00	343	12.5		
HES	PDGFRB	m	59	N.A.	N.A.	N.A.	N.A.	у
HES	PDGFRA	m	61	34.80	1/5	16.6	75	
HES	PDGFRB	m	62	20.60	204	12.5	78	
HES	PDGFRA	m	64	19.00	350	12.9	N.A.	
HES	PDGFRA	m	65	16.70	226	13.7	N.A.	У
HES	PDGFRA	m	66	7.30	181	N.A.	47	
HES	PDGFRA	m	68	8.10	197	14.4	N.A.	У
HES	PDGFRA	m	70	9.80	201	N.A.	54	
HES	PDGFRA	m	73	N.A.	N.A.	N.A.	58	У
HES	PDGFRA	f	74	20.00	N.A.	9.01	60	
HES	PDGFRA	m	76	10.30	327	13.2	87	
MDS/MPN	PDGFRB	m	49	N.A.	N.A.	N.A.	N.A.	
MDS/MPN	FGFR1	f	52	N.A.	N.A.	N.A.	14	У
MDS/MPN	PDGFRA	m	57	129.40	124	12.1	20	У
MDS/MPN	PDGFRB	m	70	6.64	118	12.7	6	
MPN	PDGFRA	m	45	4.20	134	13.5	45	
MPN	PDGFRB	m	46	58.20	115	10.1	21	
MPN	FGFR1	m	48	N.A.	N.A.	N.A.	7	у
MPN	PCM1-JAK2	m	49	27.80	96	14	1	
MPN	PDGFRB	m	50	7.70	337	9.1	N.A.	
MPN	PCM1-JAK2	m	50	13.17	246	10.8	25	
MPN	PCM1-JAK2	m	50	9.90	145	12	6	
MPN	PDGFRB	m	51	41.90	143	12.8	N.A.	
MPN	FGFR1	m	53	45.00	140	16	15	у
MPN	PDGFRB	m	53	112.00	52	10.4	25	
MPN	PDGFRB	m	58	24.50	213	16.5	4	
MPN	PCM1-JAK2	f	68	5.30	213	N.A.	1	
MPN	FGFR1	m	70	104.20	217	9.7	N.A.	у
MPN	FGFR1	m	74	52.01	N.A.	N.A.	N.A.	у
N.A.	PCM1-JAK2	m	78	N.A.	N.A.	N.A.	N.A.	У

Table S2: Patient characteristics. *Samples were collected from 2006-2016. The diagnosis assigned at the respective time is given. Abbreviations: Acute leukemia, AL; acute lymphoblastic leukemia, ALL; acute myeloid leukemia, AML; chronic eosinophilic leukemia, CEL; hypereosinophilic syndrome; HES; myelodysplastic/myeloproliferative neoplasms, MDS/MPN; myeloproliferative neoplasms, MPN; not available; N.A.; male, m; female, f; white blood cells, WBC; eosinophils in peripheral blood, PB Eos; mutation present, y(es).

Table S3

gene	region of interest*	transcript ID
ASXL1	E13	ENST0000375687
BCL2	E01	ENST0000398117
BCOR	coding region	ENST0000378444
BIRC3	coding region	ENST0000263464
BRAF	E15	ENST0000288602
BTK	E15	ENST0000308731
CALR	E09	ENST0000316448
CBL	E08-E09	ENST0000264033
CSF3R	E14, E17	ENST00000373106
CSNK1A1	E03-E04	ENST00000373106
CXCR4	E02	ENST0000241393
DNMT3A	E07-23	ENST00000264709
EGR2	E01-02	ENST00000242480
ETNK1	E03	ENST0000266517
ETV6	coding region	ENST00000396373
EZH2	coding region	ENST0000320356
FLT3-TKD	E20	ENST00000241453
GATA1	coding region	ENST0000376670
IDH1	E04	ENST00000345146
IDH2	E04	ENST00000330062
JAK2	E12+14	ENST00000381652
KIT	E08+E17	ENST0000288135
KRAS	E02-E03	ENST00000256078
MAP2K1	E01-11	ENST00000307102
MPL	E10	ENST00000372470
MYC	E01-03	ENST00000377970
MYD88	coding region	ENST00000396334
NOTCH2	E26, E27, E34	ENST00000256646
NPM1	E11	ENST00000296930
NRAS	E02-E03	ENS100000369535
PHF6	coding region	ENST00000370803
PIGA	E02-06	ENST00000333590
PLCG2	E12, E19, E20, E24, E30	ENS100000359376
PIPN11	E01-E15	ENST00000351677
RUNX1		ENST00000344691
SAMHD1	E01-16	ENST0000262878
SEIBP1		ENST0000232508
SF3B1	E13-E16	ENST00000202485
SKSFZ	E01	ENST00000392485
STATS	E20, E21	ENST00000264657
STATSB	EU2-E19	ENST0000293328
		ENST0000260305
123	E02+E06	ENST00000209505
UZAF1		ENST0000231332
		ENST0000233320
		ENST00000401558
ZRSR2	coding region	ENST00000307771

Table S3: Genes included in panel. *For over 90% of given regions a minimalcoverage of 400x was achieved. Abbreviations: tyrosine kinase domain, TKD.

Table S4

roorrongomon4	gono	mutation	load $(9/)$	8000	mutation	load $(\%)$	8000	mutation	load	gana	VIIE	lood (%)
rearrangement	gene	mutation	10au (%)	gene	mutation	10au (%)	gene	mutation	IUau	gene	005	10au (%)
FIP1L1- PDGFRA	RUNX1	c.521G>A	37	TET2	c.3714_ 3715 del	47						
FIP1L1- PDGFRA	ASXL1	c.2458_ 2459dup	38	BCOR	c.2190dup	47	ETV6	c.1196_1197 del	24	ZRSR2	c.1332_ 1343dup	89
FIP1L1- PDGFRA	DNMT3A	c.1647C>A	3									
FIP1L1- PDGFRA										SAMHD1	c.677G>A	57
FIP1L1- PDGFRA	TET2	c.5328dup	28									
FIP1L1- PDGFRA										PTPN11	c.1658C>T	46
FIP1L1- PDGFRA										ETV6	c.1193T>G	56
FIP1L1- PDGFRA	DNMT3A	c.2387G>A	24									
ETV6- PDGFRA	BCOR	c.4127del	46									
ETV6- PDGFRA	STAT5B	c.1882A>T	14									
TNIP1- PDGFRB	DNMT3A	c.2192del	41	NRAS	c.35G>A	9	ZRSR2	c.284C>T	17			
ZMYM2- FGFR1	RUNX1	c.239G>A	11									
ZMYM2- FGFR1	RUNX1	c.422G>A	23									
BCR- FGFR1	RUNX1	c.955dup	33									
FGFR1*	RUNX1	c.986_989 dup	11									
ZMYM2- FGFR1	RUNX1	c.419G>A	60									
PCM1- JAK2										PTPN11	c.1682C>T	50
PCM1- JAK2	TET2	c.2717del	37									

Table S4: Variants identified by panel sequencing. * The exact fusion is unknown. The involvement of *FGFR1* was detected by FISH. Mutation load was calculated as mutated/all reads (in %). Abbreviations: variant of uncertain significance, VUS.

Table S5

rearrangement type	state	gene	muta	load (%)	
FIP1L1-PDGFRA	ID	ASXL1	c.2458_2459dup	p.Asp820Glufs*5	38
		BCOR	c.2190dup	p.Pro731Thrfs*9	47
		ETV6	c.1196_1197del	p.Arg399Profs*26	24
	CR (imatinib)	ASXL1	c.2458_2459dup	p.Asp820Glufs*5	0
type B		BCOR	c.2190dup	p.Pro731Thrfs*9	0
		ETV6	c.1196_1197del	p.Arg399Profs*26	0
FIP1L1-PDGFRA	ID	RUNX1	c.521G>A	p.Arg174Gln	37
		TET2	c.3714_3715del	p.Leu1240Glyfs*2	47
turno D	CR (imatinib)	RUNX1	c.521G>A	p.Arg174Gln	0
туре в		TET2	c.3714_3715del	p.Leu1240Glyfs*2	0
FIP1L1-PDGFRA	ID	DNMT3A	c.1647C>A	p.Cys549*	3
type A	CR (imatinib)	DNMT3A	c.1647C>A	p.Cys549*	6
FIP1L1-PDGFRA	ID	TET2	c.5328dup	p.Leu1777Serfs*12	28
type A	CR (imatinib)	TET2	c.5328dup	p.Leu1777Serfs*12	21
FIP1L1-PDGFRA	ID	DNMT3A	c.2387G>A	p.Gly796Asp	24
type A	CR (imatinib)	DNMT3A	c.2387G>A	p.Gly796Asp	23
ETV6-PDGFRB	ID	BCOR	c.4127del	p.Gly1376Aspfs*4	46
type B	10-fold reduction of PDGFRB expression				
type B	(imatinib + GMALL)	BCOR	c.4127del	p.Gly1376Aspfs*4	0
BCR-FGFR1	ID	RUNX1	c.955dup	p.Arg319Profs*254	33
type C	all cells positive in chromosome banding	549.944			
-71	analysis	RUNX1	c.955dup	p.Arg319Prots*254	45
		DUD () ()			
ZMYM2-FGFR1	treatment naive	RUNX1	c.239G>A	p.Arg80His	11
type C	74 cells positive by FISH (ponatinib)	RUNX1	c.239G>A	p.Arg80His	51

Table S5: Follow-up for patients with mutations. We performed FISH, chromosome banding analysis or *PDGFRB* expression testing for post-treatment samples. Negative RT-PCR was used for complete molecular remission. Treatment information is given, if available, in brackets. Type A are mutations, which developed independently or prior to the rearrangements. Type B and type C are mutations derived from the MLN-Eo clone. Type C indicates subclones, which strongly expanded. Abbreviations: initial diagnosis, ID; complete remission, CR; German Multicenter Study Group for Adult Acute Lymphoblastic Leukemia, GMALL.

Figure S1

Figure S1: Event-free survival (EFS). Kaplan–Meier curves show the effect of A) mutations within the *PDGFRA* and *PDGFRB* subgroup and B) fusions types on EFS. Significance was calculated by Log Rank (Mantel Cox) and also compared pairwise in figure B. Indication to change treatment (incl. allogeneic stem cell transplantation) was counted as event. Abbreviations: not significant, n.s..

Figure S2

Figure S2: Mutation distribution according to initial final diagnosis. Absolute numbers are indicated in bars. Final diagnosis data was not available for one case and one case is not shown, because chronic eosinophilic leukemia was assigned as diagnosis only to one patient. Abbreviations: Acute leukemia, AL (includes acute lymphoblastic leukemia, ALL; acute myeloid leukemia, AML); hypereosinophilic syndrome, HES; myelodysplastic/myeloproliferative neoplasms, MDS/MPN; myeloproliferative neoplasms, MPN.