Phase I trial of plerixafor combined with decitabine in newly diagnosed older patients with acute myeloid leukemia

Gail J. Roboz,¹ Ellen K. Ritchie,¹ Yulia Dault,¹ Linda Lam,¹ Danielle C. Marshall,¹ Nicole M. Cruz,¹ Hsiao-Ting C. Hsu,¹ Duane C. Hassane,¹ Paul J. Christos,² Cindy Ippoliti,¹ Joseph M. Scandura¹ and Monica L. Guzman¹

¹Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital and ²Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA

©2018 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.183418

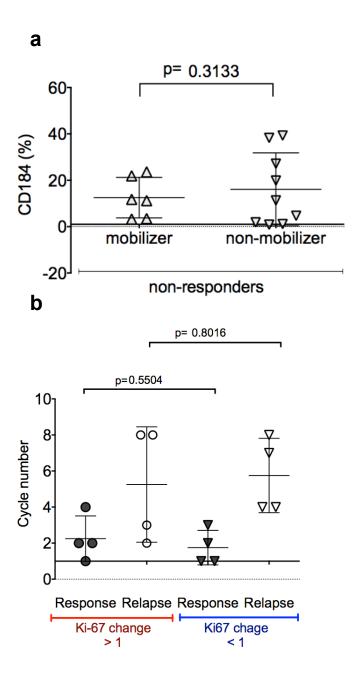
Received: October 26, 2017. Accepted: April 27, 2018. Pre-published: May 3, 2018.

Correspondence: gar2001@med.cornell.edu

Supplement 1

Cell Isolation and Culture. Primary human AML cells were obtained after informed consent with WCMC IRB approval. Mononuclear cells were isolated from the samples using Ficoll-Plaque (Pharmacia Biotech, Piscataway, NY) density gradient separation. Cells were cryopreserved in CryoStorTM CS-10 (StemCell Technologies).

Flow Cytometry/Immunophenotype. Primary cells were thawed and stained with the following surface antibody panels: (1) CD31-Fluorescein isothiocyanate (FITC) (clone WM59; BD Pharmingen), CD123-Peridinin-chlorophyll cyanin-5.5 (PerCP-Cy5.5) (clone 7G3; BD Pharmingen); CD45-allophycocyanin-Hilite®.7-BD (APC-H7) (clone 2D1; BD), CD184 (CXCR4)-allophycocyanin (APC) (clone 12G5; biolegend), CD90 (Thy1)-Alexa-fluor®700 (AxF700) (clone5E10; biolegend), CD38-phycoerythin cyanin-5 (PECy5) (clone HIT2; BD); CD202b (Tie2)-phycoerythin (PE) (clone 33.1; biolegend); CD34-phycoerythrin cyanin-7 (PECy7) (clone 8G12; BD) and DAPI (4',6-diamidino-2-phenylindole). (2) CD33-FITC (clone P67.6; BD), CD25-PerCP-Cy5.5 (M-A251; BD Pharmingen), CD45-APC-H7 (clone 2D1; BD), CD133/2-APC (clone 293C3; MACS Miltenyi biotec); CD19-AxF700 (clone HIB19; biolegend), CD34-PE-Cy5 (clone 581; BD), TIM3-PE (clone 344823; R&D Systems), CD117-PE-Cy7 (clone 104D2, biolegend), CD56 V450 (Clone B159; BD Horizon), HLA-DR-V500 (clone G46-6; BD Horizon). (3) CD123-PerCP-Cy5.5 (clone 7G3; BD Pharmingen); CD45-APC-H7 (clone 2D1; BD), CD34-PE-Cy5 (clone 581; BD), CD99-PE (Clone TÜ12; BD Pharmingen), CD38-PE-Cy7 (clone HB7; BD) and DAPI. Cell cycle: Cells were fixed (BD Cytofix/Cytoperm Buffer), permeabilized (Perm/wash buffer) and stained with CD45-APC-H7 (BD), CD34-APC (clone 8G12; BD), CD38-PE-Cy7 (clone HB7; BD), CD184-PE (clone 1D9; BD Pharmingen), Ki-67-FITC (BD), and DAPI. Cells were evaluated either in a BD LSR-II or BD LSR-Fortessa.


Instruments were evaluated prior every run with the same BDTM Cytometer Setup and Tracking (CST) beads. Data was analyzed using FlowJo Software. Statistical analyses and graphs were performed using GraphPad Prism software (GraphPad Software, San Diego, CA).

Mutational profiling

A research next-generation sequencing (NGS) analysis was also performed using a customized 29-gene myeloid malignancy targeted amplicon enrichment panel (RainDance Technologies, Billerica, MA), including ASXL1, BCOR, BRAF, CBL, DNMT3A, ETV6, EZH2, FLT3-TKD, GATA1, GATA2, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PHF6, PTPN11, RUNX1, SF1, SF3B1, SRSF2, TET2, TP53, U2AF1, WT1, and ZRSR2. Amplicons were sequenced using an Illumina MiSeq (v3 chemistry) with 251-bp paired end reads. Quality- and adapter-trimmed reads passing stringent quality control were aligned to human reference genome (GRCh37) plus decoy sequences (hs37d5) using the BWA-MEM algorithm.(1) A median average coverage depth of 2755x (1549x - 4148x) was achieved across all samples with a median of >98% (95.2%-99.0%) of targeted bases achieving >1000x depth. Single nucleotide variants (SNVs) and small insertion-deletions (indels) were identified using the VarDict algorithm(2), excluding both primer and low complexity regions. Single nucleotide polymorphisms (SNPs) with no known clinical impact of global minor allele frequency (MAF) >0.25% (dbSNP132) were filtered from subsequent analyses. Variant annotation was performed using SnpEff 4.1(3)

References

- 1. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;00(3).
- 2. Lai Z, Markovets A, Ahdesmaki M, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44(11):e108.
- 3. De Baets G, Van Durme J, Reumers J, et al. SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res. 2012;40(Database issue):D935-9.

Supplemental figure 1. CXCR4 expression has no impact on mobilization within the non-responding group and increased cycling of stem/progenitor cells does not impact the timing of relapse. (a) Scatter plot for the expression of CXCR4 at diagnosis comparing mobilizers and non-mobilizers within the clinical non-responders group. (b) Scatter plot showing the cycle number in which a response or relapse was noted, separated based on change in Ki-67 expression. Each symbol represents a patient, horizontal bar represents the mean cycle number, error bars represent the S.E.M.