Second-line rituximab, lenalidomide, and bendamustine in mantle cell lymphoma: a phase II clinical trial of the Fondazione Italiana Linfomi

Shunsuke Hatta,^{1,2} Tohru Fujiwara,¹ Takako Yamamoto,² Kei Saito,¹ Mayumi Kamata,¹ Yoshiko Tamai,³ Shin Kawamata² and Hideo Harigae¹

¹Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai; ²Division of Cell Therapy, Foundation of Biomedical Research and Innovation, Kobe and ³Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Japan

Correspondence: harigae@med.tohoku.ac.jp doi:10.3324/haematol.2017.179770

Supplementary Figure legends

Supplementary Figure 1. A case of XLSA

(**A**) Representative picture of ring sideroblasts (Prussian blue stain). (**B**) The *ALAS2* mutation, showing a T to C substitution (c.1737) was detected using genomic DNA from whole blood.

Supplementary Figure 2. Generation and phenotyping of patient-derived bone marrow mesenchymal stem cells (BM-MSCs)

(**A**) Morphology of BM-MSCs derived from a patient with X-linked sideroblastic anemia (XLSA). Scale bar, 200 μm. (**B**) Differentiation of BM-MSCs. The osteogenic cell layer exhibited positive alkaline phosphatase staining. Typical adipocytes contained oil drops that stained positively with Oil Red O. (**C**) Human BM-MSCs expressed cell-surface antigens characteristic of BM-MSCs. The analysis confirmed that the BM-MSCs expressed typical markers (e.g., CD29, CD44, CD90, and CD105) but not CD14, CD34, or CD45. (**D**) Sanger sequencing of XLSA-derived BM-MSCs showing a T to C substitution (c.1737) in the *ALAS2* gene.

Supplementary Figure 3. Generation and characterization of X-linked sideroblastic anemia (XLSA)-derived induced pluripotent stem (iPS) cells

(A) The experimental scheme for generating iPS cells from bone marrow mesenchymal stem cells (BM-MSCs). (B) Immunofluorescence staining of spontaneously differentiated NiPS and XiPS cells from embryoid bodies. Scale bar, = 50 μm.

Supplementary Figure 4. Evaluation of pluripotency for established iPS cells

(**A**) Immunofluorescence staining of embryoid bodies-based spontaneously differentiated XiPS and NiPS. Immunohistochemical staining against AFP (endoderm), α -SMA (mesoderm), and β -tubulin (ectoderm) were shown. Scale bar, 50 μ m. (**B**) Hematoxylin and eosin staining of teratomas obtained via subcutaneous injection of XiPS and NiPS cells. Histological examination confirmed that these tumors were teratomas containing tissues from all three germ layers, including neural epithelium (ectoderm), cartilage (mesoderm), and gut-like epithelium (endoderm). Ectoderm scale bar = 50 μ m. Mesoderm and endoderm scale bars = 200 μ m.

Supplementary Figure 5. Morphological analyais of NiPS- and XiPS-derived erythroblasts

May–Giemsa staining of NiPS- and XiPS-derived erythroblasts were shown.

В

Α

D

GCCGTCCTGCACACTTTGA

T1737C (Val562Ala)

NIPS
Imesoder
Intesoder

NIPS
Image: Additional state of the stat

Nay Giemsa Stain