Clinical relevance of *IDH1/2* mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group

Yann Ferret,^{1,2,3} Nicolas Boissel,^{4,5} Nathalie Helevaut,¹ Jordan Madic,⁶ Olivier Nibourel,^{1,2,3} Alice Marceau-Renaut,^{1,2,3} Maxime Bucci,¹ Sandrine Geffroy,¹ Karine Celli-Lebras,⁷ Sylvie Castaigne,⁸ Xavier Thomas,⁹ Christine Terré,¹⁰ Hervé Dombret,^{4,5} Claude Preudhomme^{1,2,3} and Aline Renneville^{1,2,3}

¹Hematology Laboratory, Biology and Pathology Center, CHRU of Lille; ²INSERM, UMR-S 1172, Cancer Research Institute of Lille; ³University of Lille, F-59000; ⁴Hematology Department, Saint-Louis Hospital, AP-HP, Paris; ⁵EA3518, Institut Universitaire d'Hématologie (IUH), University 7 Paris Diderot; ⁶Circulating Biomarkers Laboratory, Curie Institute, Paris; ⁷Acute Leukemia French Association (ALFA) coordination, Saint-Louis Hospital, AP-HP, Paris; ⁸Hematology Department, Versailles Hospital, Le Chesnay; ⁹Hematology Department, Lyon Sud Hospital, Pierre Benite and ¹⁰Cytogenetic Laboratory, Versailles Hospital, Le Chesnay, France

©2018 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.183525

Received: October 29, 2017. Accepted: February 16, 2018. Pre-published: February 22, 2018. Correspondence: aline.renneville@gmail.com

Supplemental data

Supplemental data from: Y. Ferret, *et al.* Clinical relevance of *IDH1/2* mutant allele fraction during follow-up in acute myeloid leukemia. A Study by the French ALFA group.

Supplemental data contents:

Supplementary Methods

Supplementary Tables

Table S1. Limit of detection of the droplet digital PCR assays measured on genomic DNA extracted from *IDH1/2* wild-type pooled blood lymphocytes (PBL), according to the type of *IDH1/2* mutations.

Table S2. List of sequenced regions in the Ampliseq 6-gene panel.

Table S3. List of sequenced regions in the Ampliseq 26-gene panel.

Table S4. List of sequenced regions in the Haloplex 42-gene panel.

Table S5. Patients and gene mutations considered for this study.

Supplementary Figures

Figure S1. Representative examples of 2-D plots of droplet fluorescence for *IDH1/2* wild-type controls and *IDH1/2* mutated samples, according to the type of *IDH1/2* mutations.

Figure S2. Comparison of the *NPM1* and *IDH1/2* variant allele frequencies in diagnostic samples from 34 patients carrying both mutations.

Supplementary References

Supplementary Methods

Cytogenetic analysis

Cytogenetic G-banding analysis was performed according to standard methods. The definition of a cytogenetic clone and descriptions of karyotypes followed the International System for Human Cytogenetic Nomenclature.¹ To establish normal karyotype AML, at least 20 metaphase cells from diagnostic BM had to be evaluated and the karyotype had to be found normal in each metaphase.

Gene mutation analysis and DNA sequencing

FLT3 internal tandem duplication (*FLT3*-ITD),² mutations of FLT3 tyrosine kinase domain (*FLT3-TKD*) (*FLT3* D835/I836),² *NPM1* (exon 11),³ *CEBPA*,⁴ *IDH1* (exon 4) and *IDH2* (exon 4),² were assessed centrally as previously described on genomic DNA extracted from diagnostic BM or PB samples.

Targeted next-generation sequencing (NGS) assays using different gene panels were also performed at AML diagnosis in 100/103 patients to assess the mutational status of *DNMT3A* (exons 2-23), *TET2* (exons 3-11), and for some patients, *IDH1/2* and *NPM1* mutations. Further details regarding these NGS assays are provided below.

Next-generation sequencing analysis

In 100 out of 103 patients included in this study, native genomic DNA was available at AML diagnosis for NGS analysis. For patients included in the ALFA-0702 trial, DNA samples were analyzed with either the Ampliseq 6-gene panel (n=14) or Ampliseq 26-gene panel (n=62) and the Ion PGM sequencing platform. For patients included in the ALFA-0701 trial, DNA samples were analyzed with an Haloplex 42-gene panel and an Illumina sequencing platform (n=24). Mutations of genes shared by the 3 NGS panels and mutated in \geq 4 patients in our cohort (i.e. *DNMT3A* and *TET2*) were considered for statistical analysis, in addition to *IDH1/2*, *NPM1* and *FLT3*.

1) Library preparation and sequencing

Ampliseq 6-gene panel

Mutations in a selected panel of 6 genes (*ASXL1, EZH2, DNMT3A, RUNX1, TET2, TP53*) (Supplementary Table 1) were screened by a NGS assay using the Ion AmpliSeq Library Kit 2 384 (384 reactions; Thermo FisherScientific, Carlsbad, CA). Multiplex PCR amplifications (196 primer pairs in 3 pools) were performed from 3 x 10 ng of native genomic DNA.

Amplified DNA samples were treated with FuPa reagent to partially digest the primer sequences. Barcodes and adaptors were then added to amplicons by ligation. Products were subjected to 2 successive purifications on AMPure beads (BeckmanCoulter, Brea,CA). The Agilent 2100 Bioanalyzer and the Agilent High sensitivity DNA kit were used to quantify and normalize the libraries, before pooling. Emulsion PCR was performed using the OneTouch 2 instrument (Thermo Fisher Scientific). Enrichment was performed with the ES Ion OneTouch (Ion One Touch 200 Template kit V2) and checked with the Ion Sphere Quality Control Kit. Sequencing was performed with the Ion PGM system (Thermo Fisher Scientific) onto the 316 chip (15 samples per chip).

Ampliseq 26-gene panel

Mutations in a selected panel of 26 genes (*ASXL1*, *CBL*, *DNMT3A*, *ETV6*, *EZH2*, *FLT3-TKD*, *IDH1*, *IDH2*, *JAK2*, *KIT*, *KRAS*, *MPL*, *NRAS*, *NPM1*, *PHF6*, *PTPN11*, *RIT1*, *RUNX1*, *SETBP1*, *SF3B1*, *SRSF2*, *TET2*, *TP53*, *U2AF1*, *WT1*, *and ZRSR2*) (Supplementary Table 2) were screened by a NGS assay using the Ion AmpliSeq Library Kit 2.0 (384 reactions; Thermo FisherScientific, Carlsbad, CA). Multiplex PCR amplifications (233 primer pairs in 2 pools) were performed from 2 x 10 ng of native genomic DNA. Amplified DNA samples were treated with FuPa reagent to partially digest the primer sequences. Barcodes and adaptors were then added to amplicons by ligation. Products were subjected to 2 successive purifications on AMPure beads (BeckmanCoulter, Brea,CA). The Agilent 2100 Bioanalyzer and the Agilent High sensitivity DNA kit were used to quantify and normalize the libraries, before pooling. Emulsion PCR was performed with the ES Ion OneTouch (Ion One Touch 200 Template kit V2) and checked with the Ion Sphere Quality Control Kit. Sequencing was performed with the Ion PGM system (Thermo Fisher Scientific) onto the 318 V2 chip (15 samples per chip).

In addition to those Ampliseq assays, all the samples were also screened for *ASXL1* (including c.1934dupG; p.G646WfsX12) and *SRSF2* mutations by Sanger sequencing.

Haloplex 42-gene panel

Mutations in a selected panel of 37 genes (*ASXL1, BCOR, BCORL1, CALR, CBL,CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NIPBL, NPM1, NRAS, PHF6, PTPN11, RAD21, RIT1, RUNX1, SETBP1, SF3B1, SMC1A, SMC3, SRSF2, STAG2, TET2, TP53, U2AF1, WT1, and ZRSR2)* (Supplementary Table 3) were screened by a NGS assay using the Haloplex Target Enrichment System (96 reactions; Agilent technology, Santa Clara, CA). Digestion with 8 pairs of restriction enzymes was

performed using 8 x 25 ng of native genomic DNA. After digestion, probes and index were added to the targeted DNA fragments for hybridization (4463 biotinylated probes) and simultaneous circularization. The circularized DNA fragments-probe-index complexes were captured by streptavidin beads. The circular DNA fragments were then closed by ligation, incorporating the index. After elution, the circular DNA fragments were amplified with universal primers containing the sequencing adaptors, and were subjected to a selective purification on AMPure beads (BeckmanCoulter, Brea, CA). Sequencing was performed with the MiSeq (Illumina, San Diego, CA) with the Miseq reagent 300v2 kit (14 samples per flowcell).

2) Bioinformatic analysis

Ion PGM platform

The hg19 version of the human genome was used as a reference sequence. Base calls were generated by the Torrent Browser software (5.0.4 version) using the included variant caller with an additional plug-in (Thermo Fisher Scientific). The .bam and.vcf files were used for further analysis. The .vcf files were annotated with the Ion reporter software (Thermo Fisher Scientific) and processed for a second analysis of the indexed files using the Sequence Pilot software (4.2.1 version) (JSI Medical Systems, Ettenheim, Germany). Results were compared with selection of variants that will be further considered. For each variant, depth at the variant position (number of mutated reads and unmutated reads) was considered to calculate variant allele frequency (VAF), which is the proportion of mutated reads among total reads.

Illumina platform

The hg19 version of the human genome was used as a reference sequence. The .fastq files were generated by the Miseq reporter software (2.6 version, Illumina). Base calls and variant annotations were performed with different bioinformatics analysis tools (GATK, Broad Institute; Burrows-Wheeler; Picard-tool, Broad Institute; Trim-galore, Babraham Bioinformatics). A second analysis of the indexed files was processed using the Sequence Pilot software (4.2.1 version) (JSI Medical Systems, Ettenheim, Germany). Results were compared with selection of variants that will be further considered.

Supplementary Tables

Table S1. Limit of detection of the droplet digital PCR assays measured on genomic DNA extracted from IDH1/2 wild-type pooled blood lymphocytes (PBL), according to the type of IDH1/2 mutations.

Mutation	No. of wells tested	Mean VAF (%)	SD	LOD (%)
<i>IDH</i> 2 p.R140Q	30	0.034	0.018	0.09
<i>IDH</i> 2 p.R172K	20	0.019	0.008	0.04
<i>IDH1</i> p.R132C	10	0.107	0.023	0.18
<i>IDH1</i> p.R132H	10	0.055	0.012	0.09
<i>IDH1</i> p.R132G	10	0.012	0.015	0.058

Abbreviations: VAF, variant allele fraction, SD, Standard deviation; LOD, limit of detection.

Gene	Reference sequence	Exons analyzed
ASXL1	NM_015338	2-12
DNMT3A	NM_022552	2-23
EZH2	NM_004456	2-20
RUNX1	NM_001001890	1-6
TET2	NM_001127208	3-11
TP53	NM_001126112	2-11

Table S2. List of sequenced regions in the Ampliseq 6-gene panel

Table S3. List of sequenced regions in the Ampliseq 26-gene panel

Gene	Reference sequence	Exons analyzed
ASXL1	NM_015338	11-12
CBL	NM_005188	8-9
DNMT3A	NM_022552	2-23
ETV6	NM_001987	1-8
EZH2	NM_004456	2-20
FLT3	NM_004119	14, 15, 20
IDH1	NM_005896	4
IDH2	NM_002168	4
JAK2	NM_004972	12, 14
KIT	NM_000222	8, 11, 17
KRAS	NM_033360	2-3
MPL	NM_005373	10
NPM1	NM_002520	11
NRAS	NM_002524	2-3
PHF6	NM_001015877	2-10
PTPN11	NM_002834	3
RIT1	NM_006912	5
RUNX1	NM_001001890	1-6
SETBP1	NM_015559.2	4
SF3B1	NM_012433	13-16
SRSF2	NM_003016	1
TET2	NM_001127208	3-11
TP53	NM_001126112	2-11
U2AF1	NM_006758	2-6
WT1	NM_024426	7,9
ZRSR2	NM_005089	1-11

Gene	Reference sequence	Exons analyzed
ASXL1	NM_015338	11-12
BCOR	NM_001123385	2-15
BCORL1	NM_021946	1-12
BRAF6	NM_004333	15
CALR	NM_004343.3	9
CBL	NM_005188	8-9
CEBPA	NM_004364	1
CSF3R	NM_172313.2	14
DNMT3A	NM_022552	2-23
ETV6	NM_001987	1-8
EZH2	NM_004456	2-20
FBXW7	NM_033652	9-12
FLT3	NM_004119	14, 15, 20
GATA1	NM_002049	2
GATA2	NM_032638	2-6
IDH1	NM_005896	4
IDH2	NM_002168	4
JAK2	NM_004972	12, 14
JAK3	NM_000215	13
KIT	NM_000222	8-17
KRAS	NM_033360	2-3
MPL	NM_005373	10
NIPBL	NM_133433	2-47
NOTCH1	NM_017617	26-34
NPM1	NM_002520	11
NRAS	NM_002524	2-3
PHF6	NM_001015877	2-10
PTEN	NM_000314	5-7
PTPN11	NM_002834	3-13
RAD21	NM_006265	2-14
RUNX1	NM_001001890	1-6
SETBP1	NM_015559.2	4
SF3B1	NM_012433	13-16
SMC1A	NM_006306	1-25
SMC3	NM_005445	1-29
SRSF2	NM_003016	1
STAG2	NM_001042749	3-35
TET2	NM_001127208	3-11
TP53	NM_001126112	2-11
U2AF1	NM_006758	2-6
WT1	NM_024426	7, 9
ZRSR2	NM_005089	1-11

Table S4. List of sequenced regions in the Haloplex 42-gene panel

Table S5. Patients an	d gene mutations	considered for	this study.
-----------------------	------------------	----------------	-------------

UPN	Gene	Reference transcript	Exon	Type of mutation	Nucleotide variation	Protein variation	VAF (%)
L1206290	CEBPA	NM_004364	1	Frameshift	c.109_123delinsA	p.A37TfsX66	NA
60074	CEBPA	NM_004364	1	Frameshift	c.199dupT	p.Y67LfsX41	NA
L1203196	CEBPA	NM_004364	1	Frameshift	c.333_334dup	p.P112RfsX49	NA
36979	CEBPA	NM_004364	1	Frameshift	c.342delC	p.G116AfsX44	NA
L1206290	CEBPA	NM_004364	1	In-frame duplication	c.937_939dup	p.K313dup	NA
53458	DNMT3A	NM_022552	8	Missense	c.892G>C	p.G298R	43
L1306600	DNMT3A	NM_022552	8	Nonsense	c.958C>T	p.R320X	25
38932	DNMT3A	NM_022552	12	Splice site (intron 11)	c.1430-1G>A		40
35066	DNMT3A	NM_022552	14	Missense	c.1627G>T	p.G543C	28
60074	DNMT3A	NM_022552	14	Missense	c.1644G>A	p.M548I	43
L1201703	DNMT3A	NM_022552	15	Nonsense	c.1792C>T	p.R598X	50
44474	DNMT3A	NM_022552	15	Nonsense	c.1816C>T	p.Q606X	37
L1201703	DNMT3A	NM_022552	16	Missense	c.1904G>C	p.R635P	17
53458	DNMT3A	NM_022552	16	Missense	c.1915C>T	p.L639F	37
50609	DNMT3A	NM_022552	18	Missense	c.G2159G>A	p.R720H	49
50609	DNMT3A	NM_022552	19	Missense	c.2303A>T	p.D768V	48
L1201624	DNMT3A	NM_022552	20	Missense	c.2374C>G	p.R792G	22
L1208428	DNMT3A	NM_022552	21	Missense	c.2469G>C	p.R823S	48
48483	DNMT3A	NM_022552	22	Frameshift	c.2552delT	p.F851SfsX2	43
L1206288	DNMT3A	NM_022552	23	Missense	c.2635A>G	p.N879D	43
42190	DNMT3A	NM_022552	23	Missense	c.2644C>T	p.R882C	39
38936	DNMT3A	NM_022552	23	Missense	c.2644C>T	p.R882C	39
L1200359	DNMT3A	NM_022552	23	Missense	c.2644C>T	p.R882C	46
47821	DNMT3A	NM_022552	23	Missense	c.2644C>T	p.R882C	57
L1202621	DNMT3A	NM_022552	23	Missense	c.2644C>T	p.R882C	43
52584	DNMT3A	NM_022552	23	Missense	c.2645G>A	p.R882H	51
43052	DNMT3A	NM_022552	23	Missense	c.2645G>A	p.R882H	26
41222	DNMT3A	NM_022552	23	Missense	c.2645G>A	p.R882H	45
L1206399	DNMT3A	NM_022552	23	Missense	c.2645G>A	p.R882H	48
L1200167	DNMT3A	NM_022552	23	Missense	c.2645G>A	p.R882H	43
43506	DNMT3A	NM_022552	23	Missense	c.2645G>A	p.R882H	46
54485	DNMT3A	NM_022552	23	Missense	c.2645G>A	p.R882H	47
L1200789	DNMT3A	NM_022552	23	Missense	c.2645G>A	p.R882H	44
51292	DNMT3A	NM_022552	23	Missense	c.2645G>T	p.R882L	44
45278	DNMT3A	NM_022552	23	Missense	c.2645G>C	p.R882P	40
57106	DNMT3A	NM_022552	23	Missense	c.2645G>C	p.R882P	40
42750	DNMT3A	NM_022552	23	Missense	c.2696G>A	p.R899H	23
60074	DNMT3A	NM_022552	23	Missense	c.2710C>T	p.P904S	6

UPN	Gene	Reference transcript	Exon	Type of mutation	Nucleotide variation	Protein variation	VAF (%)
48483	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	45
39771	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	46
48379	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	42
35992	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	50
L1210793	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	26
L1206288	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	35
53891	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	15
L1204485	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	42
L1303599	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	16
L1304166	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	41
L1201624	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	42
L1203356	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	34
L1200789	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	36
L1209496	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	41
L1201999	IDH1	NM_005896	4	Missense	c.394C>T	p.R132C	18
42750	IDH1	NM_005896	4	Missense	c.394C>G	p.R132G	23
35140	IDH1	NM_005896	4	Missense	c.394C>G	p.R132G	36
57712	IDH1	NM_005896	4	Missense	c.394C>G	p.R132G	37
L1208428	IDH1	NM_005896	4	Missense	c.394C>G	p.R132G	43
L1205789	IDH1	NM_005896	4	Missense	c.394C>G	p.R132G	46
40311	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	46
35066	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	52
38932	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	42
44761	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	NA
L1301870	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	38
54485	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	NA
L1211313	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	40
L1302995	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	45
L1302547	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	41
55766	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	NA
L1305787	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	42
L1306701	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	46
L1206290	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	41
50609	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	NA
51380	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	39
L1202459	IDH1	NM_005896	4	Missense	c.395G>A	p.R132H	NA

Table S5. Patients and gene mutations considered for this study (continued).

UPN	Gene	Reference transcript	Exon	Type of mutation	Nucleotide variation	Protein variation	VAF (%)
44434	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	44
48483	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	42
41029	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	51
39550	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	34
L1209948	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	53
42190	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
L1201703	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	50
L1210436	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	30
34795	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	29
38745	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	43
38936	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	25
36979	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	47
37408	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	23
43564	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
43459	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
L1200359	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	51
L1209695	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	50
L1301864	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	26
L1211151	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	47
L1300811	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	44
47821	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	50
L1301608	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	49
52584	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
L1302925	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	35
45278	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	44
L1202031	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
57150	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
42840	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
57106	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	27
L1306600	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	23
L1203196	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	49
L1306882	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	38
43052	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	29
L1202621	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	43
53312	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	46
L1200370	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
L1304314	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
41222	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	49
49624	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	53
L1201626	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	43
50179	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
L1204294	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	40
51292	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	NA
L1201420	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	38
L1206399	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	52
32487	IDH2	NM_002168	4	Missense	c.419G>A	p.R140Q	33

Table S5. Patients and gene mutations considered for this study (continued).

UPN	Gene	Reference transcript	Exon	Type of mutation	Nucleotide variation	Protein variation	VAF (%)
32888	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	22
44474	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	39
43515	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	27
34187	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	39
42458	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	NA
37365	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	32
L1302236	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	22
57081	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	24
60074	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	31
L1206397	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	NA
L1202978	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	48
53458	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	34
49614	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	NA
L1200167	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	32
38512	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	NA
L1206032	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	NA
53395	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	45
48978	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	NA
L1300683	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	NA
L1204429	IDH2	NM_002168	4	Missense	c.525G>A	p.R172K	6
43506	IDH2	NM 002168	4	Missense	c.525G>A	p.R172K	43

 Table S5. Patients and gene mutations considered for this study (continued).

UPN	Gene	Reference transcript	Exon	Type of mutation	Nucleotide variation	Protein variation	VAF (%)
34795	NPM1	NM 002520	11	Frameshift	c.860 863dupTCTG	p.W288CfsX12	17
35066	NPM1	 NM_002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	31
35140	NPM1	NM_002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	21
35992	NPM1	NM 002520	11	Frameshift	c.860 863dupTCTG	p.W288CfsX12	32
37408	NPM1	NM 002520	11	Frameshift	c.860 863dupTCTG	p.W288CfsX12	10
38932	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	27
38936	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	23
39550	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	13
39771	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	28
40311	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	28
42190	NPM1	NM 002520	11	Frameshift	c.860 863dupTCTG	p.W288CfsX12	NA
42750	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	12
42840	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	NA
43564	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	NA
44434	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	27
44761	NPM1	NM 002520	11	Frameshift	c.860_863dupTCTG	p.W288CfsX12	NA
48483	NPM1	NM 002520	11	Frameshift	c 860_863dupTCTG	p W288Cfs X12	26
50179	NPM1	NM 002520	11	Frameshift	c 860_863dupTCTG	p.W288CfsX12	NA
50609		NM 002520	11	Frameshift		n W288Cfs X12	NA
51292		NM_002520	11	Frameshift		p.W2000137(12	ΝΔ
51380		NM_002520	11	Frameshift		p.W200013X12	14
52584		NM_002520	11	Frameshift		p.W200013X12	
54485		NM 002520	11	Frameshift		p.W200CI3X12	
55766		NM_002520	11	Framochift		p.W200CISX12	
11201420		NM_002520	11	Frameshift		p.W200CISX12	24
L1201420		NM 002520	11	Frameshift		p.W200CISA12	21
11201020		NM 002520	11	Frameshift		p.W200CISA12	20
L1203330		NM 002520	11	Frameshift		p.W200CISX12	24
L1204294		NM_002520	11	Frameshift		p.W200CISX12	42
L1204400		NM_002520	11	Frameshilt		p.W200CISA12	42
L1203789		NM 002520	11	Frameshift		p.W200CISX12	26
L1209496		NIVI_002520	11	Frameshilt		p.W288CISX12	30
L1210436		NIVI_002520	11	Frameshilt		p.W288CISX12	27
L1300811	NPIVII	NM_002520	11	Frameshilt		p.W288CISX12	40
L1302547	NPM1	NM_002520	11	Frameshitt		p.W288CfsX12	37
L1302995	NPIVII	NM_002520	11	Frameshilt		p.W288CISX12	35
L1304166	NPM1	NM_002520	11	Frameshift		p.W288CfsX12	39
L1304314	NPM1	NM_002520	11	Frameshift		p.w288CfsX12	NA 05
L1305787		NM_002520	11	Framesnift		p.W288CfsX12	35
L1306600		NM_002520	11	Frameshift	c.860_863dup1C1G	p.W288CfsX12	20
43459	NPM1	NM_002520	11	Frameshift	C.863_864InsCATG	p.W288CfsX12	NA
57712	NPM1	NM_002520	11	Frameshift	c.863_864insCAIG	p.W288CfsX12	31
L1202031	NPM1	NM_002520	11	Frameshift	c.863_864insCAIG	p.W288CfsX12	NA
L1301870	NPM1	NM_002520	11	Frameshift	c.863_864insCAIG	p.W288CfsX12	35
L1202459	NPM1	NM_002520	11	Frameshift	c.863_864insCGTG	p.W288CfsX12	NA
L1306701	NPM1	NM_002520	11	Frameshift	c.863_864insCCAG	p.W288CfsX12	30
38745	NPM1	NM_002520	11	Frameshift	c.863_864insCC1G	p.W288CfsX12	29
41029	NPM1	NM_002520	11	Frameshift	c.863_864insCC1G	p.W288CfsX12	29
57150	NPM1	NM_002520	11	Frameshift	c.863_864insCCTG	p.W288CfsX12	NA
L1200370	NPM1	NM_002520	11	Frameshift	c.863_864insCCTG	p.W288CfsX12	NA
L1306882	NPM1	NM_002520	11	Frameshift	c.863_864insTATG	p.W288CfsX12	36
48483	TET2	NM_001127208	3	Frameshift	c.2348_2367del	p.E783AfsX12	71
41029	TET2	NM_001127208	3	Frameshift	c.2565delA	p.A855AfsX18	NA
42190	TET2	NM_001127208	6	Missense	c.G3637G>A	p.V1213M	16
L1201624	TET2	NM_001127208	11	In-frame deletion	c.4615_4635del	p.Q1541_Q1547del	48

Table S5. Patients and gene mutations considered for this study (continued).

Abbreviations: UPN: unique patient number; VAF, variant allele frequency; NA: not available.

Supplementary Figures

Figure S1. Representative examples of 2-D plots of droplet fluorescence for IDH1/2 wild-type controls and IDH1/2 mutated samples, according to the type of IDH1/2 mutations.

Channel 2 amplitude (HEX)

Figure S1. Representative examples of 2-D plots of droplet fluorescence for *IDH1/2* wild-type controls and *IDH1/2* mutated samples, according to the type of *IDH1/2* mutations (continued).

Channel 2 amplitude (HEX)

Channel 1 fluorescence (FAM) is plotted against channel 2 fluorescence (HEX) for each droplet. The number of droplets considered per well is indicated above each 2-D plot.

Abbreviations: VAF, variant allele fraction; CI, confidence interval; Ch, channel.

Figure S2. Comparison of the *NPM1* and *IDH1/2* variant allele frequencies in diagnostic samples from 34 patients carrying both mutations.

Supplementary References

- 1 ISCN. In: Mitelman F, ed. ISCN 1995, Guidelines for Cancer Cytogenetics, Supplement to: An International System for Human Cytogenetic Nomenclature. S. Karger; *Basel*, 1995; 1-110.
- 2 Renneville A, Boissel N, Nibourel O, et al. Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association. Leukemia 2012;26(6):1247–1254.
- 3 Boissel N, Renneville A, Biggio V, et al. Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood 2005;106(10):3618–3620.
- 4 Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002;100(8):2717–2723.