Safety and efficacy of plerixafor dose escalation for the mobilization of CD34⁺ hematopoietic progenitor cells in patients with sickle cell disease: interim results

Farid Boulad,^{1,2} Tsiporah Shore,³ Koen van Besien,³ Caterina Minniti,⁴ Mihaela Barbu-Stevanovic,⁵ Sylvie Wiener Fedus,⁶ Fabiana Perna,² June Greenberg,⁷ Danielle Guarneri,⁷ Vijay Nandi,⁵ Audrey Mauguen,⁸ Karina Yazdanbakhsh,⁵ Michel Sadelain² and Patricia A. Shi^{4,5}

¹Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York; ²Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York; ³Bone Marrow and Hematopoietic Stem Cell Transplant Program, Weill Cornell Medicine/ New York Presbyterian Hospital, New York; ⁴Sickle Cell Program, Division of Hematology, Albert Einstein College of Medicine, Bronx; ⁵Lindsley F. Kimball Research Institute, New York Blood Center, NY; ⁶Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York; ⁷Division of Hematology and Oncology, Weill Cornell Medicine /New York Presbyterian Hospital, NY and ⁸Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA

©2018 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.187047

Received: December 22, 2017. Accepted: January 23, 2018. Pre-published: February 1, 2018. Correspondence: pshi@nybc.org

Supplemental Methods

PB CD34 testing

Duplicate aliquots containing 0.5 x 10⁶ mononuclear cells were incubated with anti-CD45 FITC (fluorescein isothiocyanate, BD#340664), anti-CD34 PE (phycoerythrin, Beckman Coulter #IM 1871) monoclonal antibodies at room temperature in the dark for 20 minutes. Red blood cells were lysed with fixative-free ammonium chloride (10x NH₄CL Lysing Solution, Beckman Coulter #IM 3514) diluted with reagent grade water to 1x. 7-amino-actinomycin D (7AAD) (Beckman Coulter 3IM3422) was then added. Samples were mixed, kept at room temperature in the dark for 15 minutes and then stored for <1 hr on wet ice in the dark until acquisition/ analysis. With analysis, compensations were set to avoid spectral overlap for CD34 PE and 7AAD; 7AAD versus FSC plots were used to define non-debris regions examined in subsequent dot plots. Similarly, the FL1 secondary threshold was adjusted on the CD45 FITC versus SSC dot plot to exclude red cells, platelets, and other debris but not any CD45 FITC cells. The sequential Boolean gating strategy defined by ISHAGE was then applied to identify CD34+ cells. Viability was then evaluated on the FSC versus 7AAD dot plot instead of the traditional SSC vs 7AAD plots as this technique avoids overestimation of percent viability which can sometimes be seen with traditional gating strategies. Absolute CD34+ cell numbers were calculated using the two platform method with total white blood cell counts measured on an Advia 2120 hematology analyzer (Siemens Healthcare, Germany)

Dose level	Subject ID	% Hb F	% Hb S	Hb (g/dl)	Hct (%)	Platelet count (10 ³ /ul)	Reticulocyte count (10³/ul)	LDH (IU/L)	Spleen imaging
	1	29.3	65.6	13.0	37.3	186	88.2	328	Not done
	2	17.2	79.6	8.2	24.2	337	248.5	365	Splenomegaly
80 ug/kg	3 (1*)	12.5	83.9	9.8	28.6	257	170.5	237	Atrophic
ου μγ/κγ	4	9.3	87.2	7.5	20.8	195	292.5	822	Atrophic
	5	10.9	85.7	8.4	24.2	406	201.5	385	Atrophic
	6	6.3	89.9	9.2	26.5	442	203.1	251	Not done
160 µg/kg	7	10	86	9.9	28.6	297	134.7	400	Not done
	8 (1*)	22.7	74.9	11.8	33.3	400	154.3	435	Not done
	9	1.2	41.9	9.5	28.1	392	223.8	326	Atrophic
	10	3.1	93.1	7.4	21.9	417	266.2	172	Atrophic
240 µg/kg	12	6.1	88	8.4	23.5	322	183.3	423	Atrophic
	13	17.9	79.6	8.2	23.4	402	257.4	432	Normal size
	14	19.2	77.8	10.7	30.7	352	151.4	273	Not done
	3 (2*)	17.3	79.5	11.1	30.7	233	231.1	450	Atrophic
	8 (2*)	26.6	71.1	12.0	34.1	217	152.9	486	Not done

Supplementary Table 1. Patient characteristics: other relevant data

*Indicates first and second enrollments for indicated subject.

Bolded patients were not on HU.

Dose Level	Patient ID	CE	034 (per	ul)	WBC (x10 ³ /ul)		/ul)	ANC (x10 ³ /ul)		ALC (x10 ³ /ul)			AMC (x10 ³ /ul)			
80 µg/kg	1	20	48	6	4.0	9.1	6.0	1.9	3.7	3.1	1.3	3.8	2.0	0.6	1.5	1
	2	2	7	1	6.4	14.2	9.0	3.5	6.5	5.2	2.3	6.5	3.0	0.5	1	0.7
	3 (1*)	1	8	3	6.0	13.0	8.0	2.9	5.7	3.6	2.0	4.6	2.5	0.6	1.5	1
	4	4	18	4	8.9	15.7	12.6	4.9	5.2	4.4	2.6	7.2	5.4	1.1	2.4	2
	5	11	132	69	7.8	19.1	13.2	4.2	5.9	5.4	3.0	11.5	5.9	0.4	1.3	1.5
	6	4	37	11	6.9	12.4	8.2	2.8	3.3	3.0	2.9	7.3	3.5	1.1	1.6	1.2
160 µg/kg	7	6	43	18	9.9	18.6	13.6	5.0	7.9	6.8	3.1	7.9	4.3	1.2	2.1	1.7
	8 (1*)	1	27	30	9.4	18.5	16.9	6.3	11.1	9.9	1.8	4.9	4.9	0.9	1.5	1.5
	9	19	251	178	11.3	28.2	23.2	6.8	19.7	15.4	2.9	5.1	4.5	1.4	2.3	2.6
240 µg/kg	10	5	95	81	6.9	17.8	18.2	3.5	7.6	9.2	2.7	2.1	5.3	0.9	2.9	2.4
	12	1	19	17	12.8	26.7	20.7	8.8	13.3	10.5	2.8	11.2	7.7	1	1.1	1.7
	13	3	31	20	12.1	25.8	22.4	6.6	13.7	14.4	3.1	7.3	4.4	2	3.4	3
	14	5	63	59	7.2	19.9	13.1	4.0	7.3	6.4	2.4	10.2	5.0	0.8	1.9	1.5
	3 (2*)	2	30	27	9.0	22.5	18.1	4.8	12.2	10.5	2.9	6.9	5.0	0.9	2.3	1.8
	8 (2*)	0	10	9	4.9	11.3	10.2	1.9	4.0	4.5	1.8	4.4	3.1	1	2.2	2.1

Supplementary Table 2. Absolute PB CD34+, WBC, neutrophil, lymphocyte, and monocyte concentrations (baseline-12 hr -20 hr)

PB= peripheral blood, WBC=white blood cell, ANC= absolute neutrophil count, ALC= absolute lymphocyte count, AMC= absolute monocyte count **Bolded** patients were not on HU

Dose level	Subject ID	12 hr PB CD34⁺/ul	12 hr PB CD34 ⁺ CD38 ⁻ /ul	Peak/pre CD34 ⁺ ratio	12 hr/pre CD34 ⁺ CD38 ⁻ ratio
80 µg/kg	1	48	0.9	2.4	2.73
	2	7	0.2	3.5	3.28
	5	132	0.95	12	2.4
160 ug/kg	7	43	0.7	7.2	2.3
240 ug/kg	10	95	0.2	19	3.5
	14	63	0.3	12.6	4.5

Supplementary Table 3. Comparison of CD34⁺ and CD34⁺CD38⁻ peripheral blood concentrations and fold increases.

PB=peripheral blood

AE severity	Patient ID	Dose level (ug/kg)	WBC (ANC) closest in time to AE	Onset post- plerixafor injection	AE description	Additional considerations		
SAE	2	80 10.1 (4.6)		47 hours	5 day hospitalization for uncomplicated typical pain crisis in chest and hips	Pt had withheld that 6 days prior to study admit, she had an ED admission for pain (which would have led to study admit postponement)		
	13	240	18.5 (12.6)	80 hours	Abdominal pain requiring 10-hr ED visit where IV saline & hydromorphone (1 mg IV) given.	Pt admitted inconsistent HU use for 2 weeks prior to study admit. Also had tachycardia on admission to 102 bpm; pulse not rechecked before discharge.		
	1	80	9.1 (3.7)	0 hours	Grade 1 injection site discomfort	No intervention required.		
AE	9	160	23.2 (15.4)	24 hours	Grade 1 hip pain and myalgias	Resolved with hydromorphone (4 mg po) which is part of her standard outpatient pain regimen as needed		

Supplementary Table 4. Adverse events (AE) at least possibly related to plerixafor

ED = Emergency Department, SAE= serious adverse events

Supplemental Figure Legends

Supplemental Figure 1: There was a significant increase in the median CD34+ fold increase with dose (p=0.01). Effect of the plerixafor dose on the peak/baseline ratios at 12 hours post-plerixafor for peripheral blood CD34+ concentration (A), absolute neutrophil count (ANC) (B), and white blood cell count (WBC) (C) in 15 patients treated at 80 (circles), 160 (squares) and 240 (triangles) μ g/Kg of plerixafor. Patients on hydroxyurea are in the filled circles, squares and triangles, patients off hydroxyurea in the open circles, squares and triangles.

Supplemental Figure 2: There was no correlation between CD34 fold increase and baseline CD34+, absolute neutrophil (ANC), or white blood cell (WBC) concentrations. Association between peripheral blood CD34 peak/baseline ratios at 12h post-plerixafor and baseline values of CD34 (A), ANC (B) and WBC (C) ratios in 15 patients treated at 80 (circles), 160 (squares) and 240 (triangles) µg/Kg of plerixafor. Patients on hydroxyurea are in the filled circles, squares and triangles, patients off hydroxyurea in the open circles, squares and triangles.

Supplemental Figure 3: Hydroxyurea was not associated with differences in the fold increases of CD34+ (p=0.64), absolute neutrophil (ANC, p=0.12), or white blood cell (WBC, p=0.36) concentrations. Correlation between no hydroxyurea or hydroxyurea and peak/baseline ratios at 12h post-plerixafor of peripheral blood CD34 (A), ANC (B), and WBC (C) ratios in 15 patients treated at 80 (circles), 160 (squares) and 240 (triangles) µg/Kg of plerixafor. Patients on hydroxyurea are in the filled circles, squares and triangles, patients off hydroxyurea in the open circles, squares and triangles.

Supplementary Figure 4. 12 hr post-plerixafor, there were significant increases in absolute numbers of a β 2+ neutrophils (A) and aMac-1+ neutrophils (B) and plasma prothrombin fragment 1.2 levels (C). Absolute numbers of L-Sel^{neg} neutrophils and TF+ monocytes were not particularly high in patients with serious adverse events (D-E). Significant increases in activation markers at 12 hr post-plerixafor (A-C). Absolute values for activation markers with high fold increases in SAE patients (D-E). Filled shapes are HU-treated, open shapes are not HU-treated. Grey arrows point to the values for the two patients with serious adverse events. $a\beta 2^+$ PMN= activated β 2 integrin-positive neutrophils, aMac-1⁺ PMN = activated Mac-1-positive neutrophils, L-Sel^{neg} PMN=L-selectin-negative neutrophils, TF⁺ mono=tissue-factor-positive monocytes

Supplementary Figure 5. 12 hr post-plerixafor, there were significant decreases in % $a\beta2^+$ neutrophils (A) $a\beta2^+$ MFI (B), % TF⁺ monocytes (C), % PNA (D) and absolute numbers of PNA (E). Filled shapes are HU-treated, open shapes are not HU-treated. $a\beta2^+$ PMN= activated $\beta2$ integrin positive neutrophils, MFI= median fluorescent intensity, TF+ mono=tissue-factor positive monocytes, PNA=platelet-neutrophil aggregates.

С

D

E

