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Supplementary Methods 

Human samples 

Heparinized whole PB was collected from patients and healthy subjects after informed consent 

was obtained, in accordance with the Declaration of HelsinkiP

31
P and protocols approved by the 

National Heart, Lung, and Blood Institute Institutional Review Board (National Institutes of 

Health, Bethesda, MD; Clinicaltrials.gov identifier: NCT00001620, NCT01623167, 

NCT00001397, NCT00071045, NCT00081523, NCT00961064) (Online Supplementary Table 

S1 for clinical characteristics). HLA haplotypes were reported in Online Supplementary Table 

S2. All patients received a diagnosis of severe AA (SAA) according to the International Study of 

Aplastic Anemia and AgranulocytosisP

32
P and to the criteria of CamittaP

33
P. At the time of blood 

sampling, none of the patients had received therapy. Immunosuppressive therapies, such as 

cyclosporine A and anti-thymocyte globulin with or without eltrombopag, were administered 

according to protocols. Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-

Paque density gradient centrifugation (MP Biomedicals, LLC, Santa Ana, CA) according to the 

manufacturer’s instructions. 

Flow cytometric analysis 

A minimum of 4x10P

6
P PBMCs from each subject were stained for TCR Vβ repertoire analysis. 

Manufacturer’s instructions of IOTest Beta Mark (Beckman Coulter, Miami, FL) were optimized 

as follows: 4 μL of Pacific Blue – conjugated anti-CD8, 5 μL of Brilliant Violet (BV) 510 – 

conjugated anti-CD28, 5 µL of BV605 – conjugated anti-CD3, 5 μL of allophycocyanin (APC) – 

conjugated anti-CD57, 5 µL of APC-phycoerythrin cytochrome 7 (Cy7) – conjugated anti-CD4 

antibodies (all from BioLegend, San Diego, CA) were added. Cell mixture was divided into 8 
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individual tubes with different TCR Vβ antibody combinations (IOTest Beta Mark). After 20 

min incubation at room temperature, samples were washed twice with phosphate buffered saline 

(PBS, Lonza, Walkersville, MD) and resuspended in the same buffer for acquisition. Expanded 

TCR Vβ clones found in IOTest Beta Mark kit were confirmed for accuracy with individual TCR 

Vβ antibodies (Beckman Coulter). Compensation was performed using single-color stained 

samples and an unstained sample as negative control. A LSR Fortessa cytometer equipped with 

FACSDiva software (v.8.0.1) (BD Biosciences, San Jose, CA) was used for acquisition, and 

FlowJo software (v.10.0.7b, Treestar, Ashland, OR) for analysis. Lymphocytes were identified 

based on forward and side scatter parameters and gated for CD3 expression. On CD3P

+
P 

population, CD4P

+
P and CD8P

+
P subsets were identified and gated for CD28 and CD57 expression. 

On CD28P

-
PCD57P

+
P and CD28P

+
PCD57P

-
P populations, each Vβ subfamily was studied (Online 

Supplementary Figure S1). Percentages of CD28P

+
PCD57P

-
P and CD58P

-
PCD57P

+
P cells were expressed 

as percent of CD3P

+
PCD8P

+
P or CD3P

+
PCD4P

+
P cells; similarly, each Vβ family size was expressed as 

percent of the given CD4P

+
P or CD8P

+
P cell population. 

 

TCR repertoire deep sequencing 

Before alignment, raw reads were filtered to remove reads containing adaptor sequences, false 

positive, and low-quality reads. For merging two paired-reads into one complete sequence, 

COPE software v1.1.3 (BGI, Cambridge, MA) was used for an overlap of >90% base matching 

(10 to 99 nucleotides [nt] for overlapped region). For other reads, FqMerger software (BGI) was 

used for 90% identity (matched bases) with overlap length of 50 to 150 nt. The alignment was 

performed by MiTCR software (milaboratory) using -pset flex -cysphe 1 -t 6 as parameters and 

by The International Immunogenetics Information System® (IMGT) as database 
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(31TUhttp://www.imgt.orgU31T). The number of in-frame reads during analysis was counted as productive 

reads. The sequence included between the second conserved cysteine encoded by the 3’ region of 

Vβ gene segment and the conserved phenylalanine encoded by the 5’ portion of Jβ gene segment 

was considered as CDR3 β sequenceP

17
P. 

 

Homology assessment 

CDR3 amino acid sequences with frequency > 0.1% in CD8P

+
P cell pool were selected for 

homology analysis (Figure 6A) as previously describedP

17,40 
Pto assess identical CDR3 sequences 

among filtered TCR repertoires. 

Finally, immunodominant and shared CDR3 sequences were compared with CDR3 β repertoires 

reported in literature for cytomegalovirusP

1-9
P, Epstein-Barr virusP

3,6,9
P, BK virusP

8
P, herpes-simplex 

virus type 1 and 2P

10-12
P, varicella-Zoster virusP

13
P, hepatitis C virusP

14
P, and Mycobacterium 

tuberculosisP

15-16
P infections. Sequences from the following diseases were also analyzed: non-

Hodgkin lymphomasP

17
P, T-large granular lymphocyte leukemia (T-LGLL)P

18
P, AAP

19
P, paroxysmal 

nocturnal hemoglobinuriaP

20
P, juvenile dermatomyositis syndromeP

21
P, multiple sclerosisP

22
P, 

rheumatoid arthritisP

23
P, systemic lupus erythematosusP

24
P, cancersP

25-30
P, Crohn’s diseaseP

31
P, and also 

from human mucosal-associated invariant T cell TCR repertoireP

32
P. 

Structural analysis of shared and immunodominant clonotypes was performed to identify similar 

charged residue pattern within CDR3 sequences, as described previouslyP

8
P. Amino acid 

sequences, as defined above, were aligned at N-terminal of Vβ and C-terminal of Jβ. ClustalW2 

(31Thttps://www.ebi.ac.uk/Tools/msa/clustalw2/31T) was used to confirm our analysis. 

 

 

http://www.imgt.org/
https://www.ebi.ac.uk/Tools/msa/clustalw2/
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Supplementary Table S1. Clinical characteristics. 

 SAA 
(n=24) 

PRCA 
(n=5) 

MDS 
(n=8) 

SCD 
(n=10) 

Healthy controls 
(n=34) 

Mean age (years) 38.7  
(range, 7-79) 

60.8  
(range, 29-82) 

60.4  
(range, 38-79) 

46.9  
(range, 34-66) 

41  
(range 23-82) 

Gender (M/F) 13/11 1/4 5/3 4/6 15/19 
Transfusion history 
No transfusion records  

23 
1 

5 
- 

6 
2 

10 
- 

- 

CMV serostatus 
IgG positivity 
IgM positivity 

 
15/24 
1/24 

    

Median follow-up (months) 14.1  
(range, 2.9-55.3) 

- - - - 

Relapse/Death 7 - - - - 
Treatment 
None 

CsA+ATG 
CsA+ATG+Eltrombopag 

 
1 
3 
20 

- - - - 

SAA: severe acquired aplastic anemia; PRCA: pure red cell aplasia; MDS: myelodysplastic syndrome; SCD: sickle cell disease; 
CMV: cytomegalovirus; CsA: cyclosporine A; ATG: anti-thymocyte globulin. 



Supplementary Table S2. SAA patients’ (n=12) and healthy donors’ (n=9) characteristics of TCR repertoire deep sequencing in CD8P

+
P T 

cells. 

  CMV serostatus HLA characterization Deep sequencing 

 Age M/F IgG 
(U/mL) 

IgM 
(AU/mL) 

A A*02 B C DRB1 DQB1 DRB_ V gene J gene NGS 
frequency 

Amino acid sequence NGS 
frequency 

SAA patients (n=12) 
AA1 44 F 2.43 Neg. 02,30 01:01 14,44 05,08 01,04 03,05 4*01 TRBV2 TRBJ2-7 0.231 CASSVRDYEQYF 0.215 

            TRBV20-1 TRBJ2-3 0.042 CSALPPGLASTDTQYF 0.022 

            TRBV4-2 TRBJ1-2 0.041 CASSQEVGGTNYGYTF 0.040 

AA2 71 M 2.52 Neg. 25,74  07,18 07,12 07,15 02,06 4*01 TRBV15 TRBJ2-5 0.349 CATSTGTWTEQETQYF 0.346 

           5*01 TRBV7-9 TRBJ2-7 0.139 CASSFRDWGRYEQYF 0.128 

            TRBV20-1 TRBJ2-7 0.097 CSARDLAEEQYF 0.093 

AA3 59 F Neg. Neg. 01,02 01 07,18 07,07 04,11 03,03 3*02 TRBV20-1 TRBJ2-3 0.541 CSARDPPVSGTRGTDTQYF 0.536 

      246     4*01 TRBV6-6 TRBJ2-1 0.024 CASSYRETNEQFF 0.023 

      338      TRBV15 TRBJ2-7 0.021 CATSRETGAAEQYF 0.018 

AA4 44 M >5.0 Neg. 02,74 01:01 35,57 07,16 08,13 02,03 3*02 TRBV15 TRBJ2-1 0.240 CATSSSRSGQGLNEQFF 0.234 

      90      TRBV15 TRBJ1-1 0.147 CATSRPFPGQGAN*AEAFF 0.142 

      195      TRBV24-1 TRBJ2-7 0.054 CATSDPLTASYEQYF 0.049 

AA5 55 M >5.0 Neg. 33,36 . 45,58 03,16 03,12 02,03 3*02 TRBV9 TRBJ2-2 0.162 CASGGANSPLHF 0.119 

            TRBV20-1 TRBJ2-6 0.050 CSAPDDGANVLTF 0.047 

            TRBV29-1 TRBJ2-7 0.027 CSVEADNRAGANVLTF 0.000 

AA6 30 M 2.53 Neg. 02,33 02 40,53 03,04 04,15 03,06 4*01 TRBV5-6 TRBJ2-1 0.176 CASSLD~SNEQFF 0.176 

           5*01:01 TRBV6-4 TRBJ2-5 0.118 CASSEGLESETQYF 0.113 

            TRBV20-1 TRBJ2-1 0.111 CSAPGSGDRNEQFF 0.103 

AA7 49 M Neg. Neg. 01,26  07,27 06,07 11,15 03,06 3*02 TRBV12-4, 12-3 TRBJ2-2 0.043 CASSFTGELFF 0.041 

           5*01:01 TRBV15 TRBJ1-1 0.039 CATGSTRTGGRTEAFF 0.036 

            TRBV5-6 TRBJ1-2 0.035 CASSLAGNYGYTF 0.030 

AA8 40 F Neg. Neg. 03,24  07,49 07,07 11,15 03,06 3*02 TRBV20-1 TRBJ2-7 0.034 CSARDAADYEQYF 0.008 

           5*01:01 TRBV20-1 TRBJ1-1 0.030 CSASRAGGVTEAFF 0.009 

            TRBV20-1 TRBJ2-6 0.027 CSARDAP~GANVLTF 0.015 

AA9 55 F > 10 Neg 11,26  51,52 07,12 04,10 03,05 4*01 TRBV20-1 TRBJ1-5 0.193 CSATDG~NQPQHF 0.189 

            TRBV15 TRBJ2-5 0.221 CATSRVAGETQYF 0.188 

            TRBV7-8 TRBJ2-7 0.075 CASSSPGQFDEQYF 0.072 

AA10 57 F > 10 Neg 11,29  07,14 08,15 11,15 03,06 3*02 TRBV7-8 TRBJ2-3 0.117 CASSLAGGPDTQYF 0.116 

           5*01 TRBV2 TRBJ2-3 0.086 CASGDGGTDTQYF 0.083 



            TRBV11-3 TRBJ1-1 0.043 CASSLDLTGNTEAFF 0.042 

AA11 16 M 7.2 Neg 02,30  07,57 07,18 11,15 03,06 3*02 TRBV10-3 TRBJ2-5 0.033 CAISESSFSSQETQYF 0.028 

           5*01:01 TRBV10-2 TRBJ1-2 0.026 CASSESRGYNYGYTF 0.024 

            TRBV4-3 TRBJ1-6 0.019 CASSQDLLPGDNSPLHF 0.018 

AA12 14 M 2.6 Neg 24  07,52 03,07 14,15 03,06 3*01 TRBV5-1 TRBJ1-2 0.064 CASSQR~GGYTF 0.061 

           5*01:01 TRBV10-1 TRBJ2-7 0.022 CASSDGGPSYEQYF 0.020 

            TRBV3-1 TRBJ2-7 0.011 CASSPRQGVDEQYF 0.010 

Healthy controls (n=9) 

HC1 35 M          TRBV15 TRBJ2-1 0.107 CATSRDGDLGYNEQFF 0.101 

            TRBV5-6 TRBJ2-7 0.094 CASSLDPGSYEQYF 0.091 

            TRBV24-1 TRBJ1-5 0.069 CATSLAG~DQPQHF 0.065 

HC2 36 M          TRBV12-4, 12-3 TRBJ1-2 0.092 CASSSANYGYTF 0.088 

            TRBV20-1 TRBJ2-7 0.059 CSAPGGGGQGNPEQYF 0.016 

            TRBV4-1 TRBJ1-1 0.056 CASSQEQTDANTEAFF 0.055 

HC3            TRBV7-9 TRBJ2-2 0.121 CASSLDSPPFGELFF 0.119 

            TRBV29-1 TRBJ2-7 0.091 CSVEGGSSYEQYF 0.045 

            TRBV6-1 TRBJ2-7 0.068 CASMDWGQDRAYEQYF 0.066 

HC4 38 F          TRBV10-3 TRBJ1-6 0.051 CAISELWARPVGNSPLHF 0.049 

            TRBV10-2 TRBJ2-5 0.041 CASQGTGEKTQYF 0.041 

            TRBV10-1 TRBJ1-1 0.016 CASSERKG~GGSTEAFF 0.016 

HC5 27 F          TRBV25-1 TRBJ2-7 0.150 CASSGGGRGIKNEQYF 0.132 

            TRBV5-1 TRBJ2-3 0.072 CASSLEGGYTDTQYF 0.066 

            TRBV20-1 TRBJ2-7 0.037 CSAIPTGTYEQYF 0.019 

HC6 28 F          TRBV25-1 TRBJ2-3 0.383 CASSALAGAGDTQYF 0.379 

            TRBV10-1 TRBJ2-2 0.191 CASTID~GELFF 0.190 

            TRBV6-4 TRBJ1-6 0.036 CASSDSSGGNSPLHF 0.036 

HC7 23 M          TRBV7-9 TRBJ2-1 0.089 CASSLAERLSSYNEQFF 0.084 

            TRBV19 TRBJ2-5 0.072 CASSTWDRGSRETQYF 0.052 

            TRBV29-1 TRBJ1-2 0.043 CSAVRQGEYGYTF 0.041 

HC8 24 F          TRBV19 TRBJ1-1 0.032 CASSIVGRGDTEAFF 0.020 

            TRBV20-1 TRBJ2-5 0.030 CSASGASGELRETQYF 0.018 

            TRBV29-1 TRBJ2-5 0.017 CSVEVSWTGG*ETQYF 0.013 

HC9 32 F          TRBV7-6 TRBJ2-5 0.533 CASSLGETQYF 0.056 

            TRBV20-1 TRBJ2-1 0.0003 CSSGPYNEQFF 0.027 

            TRBV7-7 TRBJ2-7 0.0002 CASSLAPGSTYEQYF 0.026 

SAA: severe acquired aplastic anemia; TCR: T-cell receptor; CMV: cytomegalovirus; HLA: human leukocyte antigen; NGS: next-generation sequencing.  



Supplementary Table S3. Frequency of PNH-associated clonotypes. 

 CASSLVGGPEQYF CATSRVAGETQYF CATSRTAGETQYF CATSRTGGETQYF CATSRVGGETQYF CATSRDLAGETQYF 
AA1    0.0001   
AA2    0.0456   
AA3 0.00002   0.0001   
AA4 0.00001   0.0003   
AA5       
AA6    0.0003   
AA7    0.0002   
AA8 0.00003   0.0002   
AA9  18.8384 0.00003 0.6668 9.7E-05 1.4E-05 
AA10  0.0105  0.0004   
AA11  0.0115  0.0003   
AA12  0.0170  0.0006   
AA3 CD57       
AA4 CD57       
HC1 0.00002   0.0002   
HC2 0.00001   0.0002   
HC3    0.0002   
HC4  0.0090  0.0003   
HC5  0.0127  0.0005   
HC6  0.0083  0.0003  2.2E-03 
HC7  0.0104  0.0004   
HC8  0.0102  0.0003   
HC9       
PNH: paroxysmal nocturnal hemoglobinuria; AA: acquired aplastic anemia patient identification number; HC: healthy control identification 
number. PNH-related CDR3 sequences are from Gargiulo L, et al. Blood. 2007;109(11):5036-5042. 



Supplementary Figure S1. Giudice V. et al.
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Supplementary Figure S2. Vβ usage of different T cell compartments in SAA

patients.

Vβ usage was studied in CD4+CD28+ (A), CD4+CD57+ (B), and CD8+CD28+ (C) T

cells. A bar graph was made for each SAA patient, as described in Figure 2 A.

Supplementary Figure S2. Giudice V. et al.
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Supplementary Figure S3. Vβ usage analysis in total CD8+ and effector memory

CD8+ cells by flow cytometry.

Vβ usage was studied in CD8+CD57+ and total CD8+ cells for each healthy donor and

SAA patient. Subjects (UPN) were divided using the mean frequency of CD8+CD57+

cells in healthy donors (13.3%) as a cut-off. Results were plotted as relative frequency

and converted in color scale. For Vβ usage in effector memory CD8+ cells (bottom

row in each subject), colors range from white to green (from 0% to highest value);

while, for total CD8+ cells (top row in each subject), colors range from white to red

(from 0% to highest value).
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Supplementary Figure S4. Vβ usage analysis in effector memory CD8+ cells by

flow cytometry during the course of disease and in peripheral blood (PB) and

bone marrow (BM).

(A) Vβ usage was studied in CD8+CD57+ cells from PB of two patients at 3 (3mo)

and 6 months (6mo) of immunosuppressive therapies. Both patients were non-

responders (NR) at 3 months. At 6 month timepoint, patient 4 was NR, while patient

34 achieved a minimal partial-response (PR). (B) Vβ usage was compared between

PB and BM at baseline for these two SAA patients and results shown as bar graphs.

A
Aplastic anemia: patient 4 Aplastic anemia: patient 34

P
e
rc

e
n

t 
o

f 
p

o
s
it

iv
e
 C

D
8

c
e
ll
s

B

0
1
2
3
4
5
6
7
8
9

Baseline 3mo 6mo

Vβ17 clone

Vβ13.6 clone

NR Minimal 

PR

0

1

2

3

4

5

6

Baseline 3mo 6mo

Vβ1 clone

Vβ14 clone

Vβ22 clone

NR NR



0 2 0 4 0 6 0 8 0 1 0 0

0

2 0

4 0

6 0

8 0

1 0 0

A g e  (y e a rs )

C
D

5
7

 e
x

p
r
e

s
s

io
n

 (
%

)

0 2 0 4 0 6 0 8 0 1 0 0

0

1 0

2 0

3 0

A g e  (y e a rs )

Im
m

u
n

o
d

o
m

in
a

n
t 

c
lo

n
e

 (
%

)

0 2 0 4 0 6 0 8 0 1 0 0

0

1 0

2 0

3 0

A g e  (y e a rs )

Im
m

u
n

o
d

o
m

in
a

n
t 

c
lo

n
e

 (
%

)

0 2 0 4 0 6 0 8 0 1 0 0

0

2 0

4 0

6 0

8 0

1 0 0

A g e  (y e a rs )

C
D

5
7

 e
x

p
r
e

s
s

io
n

 (
%

)
Healthy controls SAA patients

r2=0.034

P=0.304
r2=0.552

P<0.0001

r2=0.0003

P=0.919
r2=0.140

P=0.079

Supplementary Figure S5. Age-effects assessment on CD57 expression and clone

size.

Linear regression analysis was performed to exclude age-effects on CD57 expression

(top) and clone size (bottom). The percentage of the immunodominant clones (bottom

panels) were calculated on CD8+CD57+ cells as total CD8+ cell percentage. R square

and p values were reported. P<0.05 was considered statistically significant.

Supplementary Figure S5. Giudice V. et al.
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in other hematological diseases.

(A) Percentages of CD8+CD57+ cells were calculated on CD8+ compartment for

healthy controls, myelodysplastic syndrome (MDS), pure red cell aplasia (PRCA) and

sickle cell disease (SCD) patients. Data are shown as mean+SD. Unpaired t-test was

performed and P<0.05 was considered statistically significant. (B) Percentages of Vβ

family in CD8+CD57+ cells were calculated on total CD8+ cells, and Vβ skewing in

patients was defined using the mean+3SD of a given Vβ group in healthy donors.

Relative expansion of each Vβ subgroup is shown in the bar graph. Patients were

divided based on the disease. The skewing of one Vβ family is reported as orange bar.
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Supplementary Figure S7. Characterization of Vβ/Jβ plot, CDR3 size and DJ

length profiles in healthy donors by deep sequencing.

(A) T-cell receptor beta variable (TRBV)/T-cell receptor beta joining (TRBJ) plots

showed citylike landscape for total CD4+ and CD8+ cell populations in healthy

subjects (HC). (B) The complementarity region 3 (CDR3) size and DJ length profiles

also were defined, showing similar features in CD4+ and CD8+ cells.

C
D

R
3
 s

iz
e

D
J
 l
e
n

g
th

HC4 HC5 HC8 HC9HC6 HC7
B

A
Supplementary Figure S7. Giudice V. et al.

CD8+ T cellsCD4+ T cells



0

500000

1000000

0

500000

1000000

1500000

2000000

0

50000

100000

150000

0

500000

1000000

0

50000

100000

150000

0

100000

200000

300000

0

50000

100000

150000

200000

250000

0

100000

200000

300000

400000

500000

Total CD8+ cells
AA9

Total CD4+ cells

AA10

AA11

AA12

C
D

R
3
 s

iz
e

D
J
 l
e
n

g
th

AA9 AA10B

A

S
e

q
u

e
n

c
in

g
 C

o
u

n
ts

 a
s

 T
o

ta
l 
P

ro
d

u
c

ti
v
e

 R
e

a
d

s

TRBV Families

AA11 AA12

Supplementary Figure S8. Giudice V. et al.

CD8+ T cells

CD4+ T cells



Supplementary Figure S8. Characterization of Vβ/Jβ plot, CDR3 size and DJ

length profiles in severe aplastic anemia patients by deep sequencing.

(A) T-cell receptor beta variable (TRBV)/T-cell receptor beta joining (TRBJ) plots

showed citylike landscape for total CD4+ cells, and oligoclonality in CD8+ cell

population in aplastic anemia (AA) subjects. (B) The complementarity region 3

(CDR3) size and DJ length profiles also were defined in CD4+ and CD8+ cells.
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Supplementary Figure S9. Simpson’s index of diversity in aplastic anemia 
patients.

(A) By paired t-test, Simpson’s indexes were compared between total CD4+ and total 
CD8+ cells for each AA patient. (B) Simpson’s indexes were calculated for each 
patient in total CD4+, CD8+ and CD8+CD57+ cell populations, and compared by one-

way ANOVA with Turkey’s multiple comparison test. *, P<0.05; ***, P<0.001; 
****, P<0.0001.
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