SUPPLEMENTARY APPENDIX

No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy

Panagiotis Baliakas,* 1 Mattias Mattsson,* 1,2 Anastasia Hadzidimitriou, 3 Eva Minga, 3 Andreas Agathangelidis, 3,4,5 Lesley-Ann Sutton, 1 Lydia Scarfo,4,5 Zadie Davis, 6 Xiao-Jie Yan, 7 Karla Plevova,8,9 Yorick Sandberg, 10 Fie J. Vojdeman,11 Tatiana Tzenou,12 Charles C. Chu,7 Silvio Veronese,13 Larry Mansouri, 1 Karin E Smedby,14 Véronique Giudicelli,15 Florence Nguyen-Khac,16 Panagiotis Panagiotidis,12 Gunnar Juliusson,17 Achilles Anagnostopoulos,18 Marie-Paule Lefranc,15 Livio Trentin,19,20 Mark Catherwood,21 Marco Montillo,13 Carsten U. Niemann,11 Anton W. Langerak,10 Sarka Pospisilova,8,9 Niki Stavroyianni,18 Nicholas Chiorazzi,7 David Oscier,6 Diane F Jelinek,22 Tait Shanafelt,23 Nikos Darzentas,8 Chrysoula Belessi,24 Frederic Davi,16 Paolo Ghia,4,5 Richard Rosenquist1,25 and Kostas Stamatopoulos1,3,18

*Equal first authors

'Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden; ²Department of Hematology, Uppsala University Hospital, Sweden; ³Institute of Applied Biosciences, Thessaloniki, Greece; ⁴Università Vita-Salute San Raffaele, Milan; ⁵Strategic Research Program in CLL, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; ⁶Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; ⁷The Feinstein Institute for Medical Research, Northwell Health, New York, USA; ⁸CEITEC-Central European Institute of Technology, MasarykBrno, Czech Republic; ⁹University Hospital Brno, Czech Republic; ¹⁰Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands; ¹¹Department of Hematology, Rigshospitalet, Copenhagen, Denmark; ¹²First Department of Propaedeutic Medicine, University of Athens, Greece; ¹³Molecular Pathology Unit and Haematology Department, Niguarda Cancer Center, Niguarda Hospital, Milan, Italy; ¹⁴Department of Medicine Solna, Clinical Epidemiology Unit, Karolinska Institutet, and Hematology Center, Karolinska University Hospital, Stockholm, Sweden; ¹⁵IMGT®, the international ImMunoGeneTics information system®, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UPR CNRS 1142, Montpellier, France; ¹⁶Hematology Department and University Pierre et Marie Curie, Hopital Pitie-Salpetriere, Paris, France; ¹⁷Lund University and Hospital Department of Hematology, Lund Stem Cell Center, Sweden; ¹⁸Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece; ¹⁹Department of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy; ²⁰Venetian Institute of Molecular Medicine, Padova, Italy; ²¹Department of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA; ²⁴Hematology Department, Nikea General Hospital, Piraeus, Greece and ²⁵Department of Molecula

Correspondence: kostas.stamatopoulos@gmail.com doi:10.3324/haematol.2017.182634

No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy

Supplementary material includes details regarding the evaluated cohort, the applied methodology as well as Supplemental Tables 1-2 and Supplemental Figures 1-4.

Supplemental Table 1. Basic clinicobiological features of the evaluated cohort.

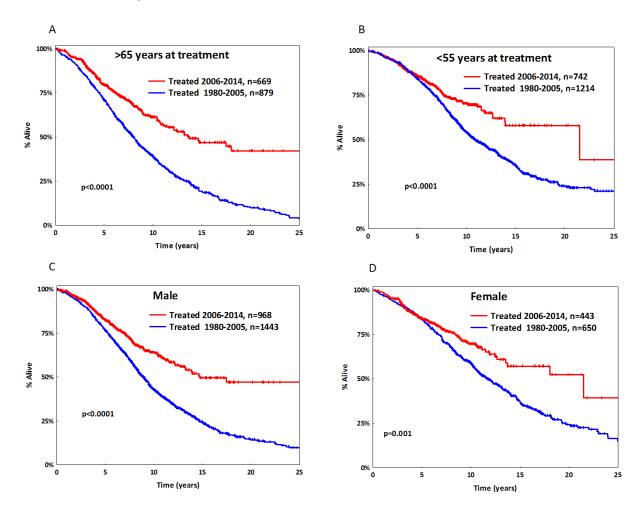
n=3504	n, %
Male	2411/3504, 69%
Age at treatment	63.9 (22-92) years
M-CLL	1286/3504, 37%
del(13q)*	528/953, 55%
Trisomy 12*	239/1201, 20%
del(11q)*	339/1613, 21%
del(17p)*	217/1857, 12%
Subset #2 [‡]	166/3504, 5%
Subset #1 [¥]	110/3504, 3%

M-CLL: CLL carrying mutated IGHV genes, *According to the Döhner hierarchical model, [‡] Assignment to stereotyped subset #2, ^{*} Assignment to stereotyped subset #1.

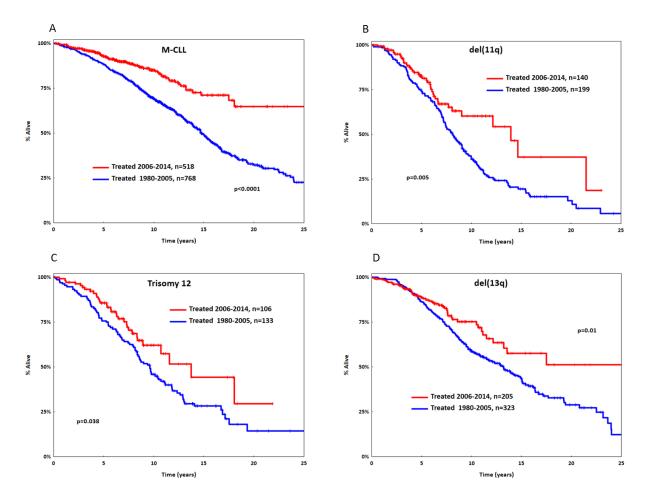
Supplemental Table 2. Distribution of cases included in the study in relation to the time of primary treatment.

	Time of primary treatment			
n=3504	1980-1990	1991-2000	2001-2005	2006-2014
n, %	84, 2%	623, 18%	1386, 39%	1411, 41%

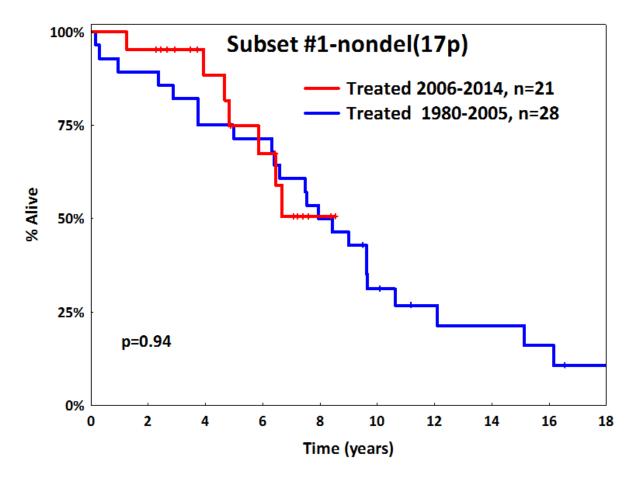
Methods


PCR amplification of IGHV-IGHD-IGHJ rearrangements - Sequence analysis

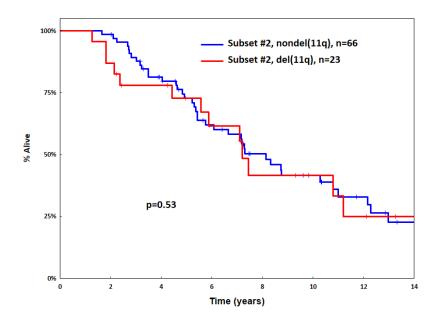
PCR amplification and sequence analysis of IGHV-IGHD-IGHJ rearrangements were performed on either genomic DNA (gDNA) or complementary DNA (cDNA), as previously described. PCR amplicons were subjected to direct sequencing on both strands. Sequence data were analyzed using the IMGT® databases and the IMGT/V-QUEST tool (http://www.imgt.org). Only productive rearrangements were evaluated. Output data from IMGT/V-QUEST for all productive IGHV-IGHD-IGHJ rearrangements were parsed, reorganized, and exported to a spreadsheet through the use of computer programming. Information was extracted regarding IG gene repertoires, VH CDR3-IMGT length and amino acid sequence and SHM; to identify and cluster stereotyped rearrangements, we used a purpose-built bioinformatics method, as previously described (bat.infspire.org/arrest/)(1).


FISH analysis

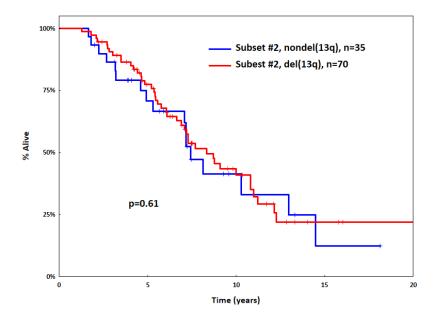
Preparations for FISH analysis were counterstained with 4,6-diamidino-phenyl-indole (DAPI) using probes for the 13q14, 13q34, 11q22, 17p13 regions and trisomy 12; a minimum of 200 interphase nuclei were examined.


Supplemental Figure 1. Inferior overall survival for cases treated between 1980-2005 (blue line), compared to cases treated between 2006-2014 (red line) independently of age at the time of treatment (A, B) or gender (C, D).

Supplemental Figure 2. Inferior overall survival for cases treated between 1980-2005 (blue line) compared to cases treated between 2006-2014 (red line) for all M-CLL (A), and independently of the presence of del(11q) (B), trisomy 12 (C) or del(13q) (D).



Supplemental Figure 3. No improvement in overall survival over time for cases belonging to subset #1 even after excluding del(17p) cases.



Supplemental Figure 4. No impact of del(11q) (A) or del(13q) (B) on the overall survival of subset #2 cases.

Α

В

References

1.Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012;119(19):4467-75.