Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance

Marzia Varettoni,¹ Silvia Zibellini,¹ Irene Defrancesco,¹ Virginia Valeria Ferretti,² Ettore Rizzo,³ Luca Malcovati^{1,2}, Anna Gallì,¹ Matteo Giovanni Della Porta,⁴ Emanuela Boveri,⁵ Luca Arcaini,^{1,2} Chiara Candido,¹ Marco Paulli⁵ and Mario Cazzola^{1,2}

¹Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia; ²Department of Molecular Medicine, University of Pavia; ³enGenome srl, Pavia; ⁴Cancer Center, IRCCS Humanitas Research Hospital & Humanitas University, Milan, and ⁵Anatomic Pathology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy

©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.172718

Received: May 15, 2017. Accepted: September 28, 2017 Pre-published: October 5, 2017. Correspondence: m.varettoni@smatteo.pv.it

SUPPLEMENTAL METHODS

Sample collection and cell separation

Samples were collected in untreated patients in 236/260 patients (91%) and after treatment in 24 (9%). Bone marrow mononuclear cells (BMMNCs) were separated by standard density gradient centrifugation (Lympholyte-H; CEDARLANE Laboratories Ltd). CD19+ cells were further isolated from BMMNCs by immunomagnetic adsorption on MiniMACS separation columns using an anti-CD19 antibody (Miltenyi Biotec GmbH) according to the manufacturer's recommendations. The purity of CD19+ separated cells was assessed by flow cytometry using anti-CD19 monoclonal antibodies (Becton Dickinson). CD19-depleted BMMNCs cells were used as control tissue. DNA was extracted following standard protocols for human tissue.

Mutation analysis of MYD88 using allele-specific RT-qPCR for MYD88 (265P)

RT-qPCR based allelic discrimination assay was developed for MYD88 (L265P) mutation. For the allelic discrimination of the c.794T>C, a common forward primer (MYD88_F 5'-AATGTGTGCCAGGGGTACTTAG-3') and 2 reverse primers (MYD88_Rwt 5'-GCCTTGTACTTGATGGGGAaCG-3') and 2 reverse primers (MYD88_Rwt 5'-CCTTGTACTTGATGGGGAaCG-3') were designed based on the nucleotide difference at the 3' terminal base (T or C). To prevent the amplification of the nonmatching primer, an additional nucleotide mismatch (A_C) located 3 bases from the 3' termini of the allelespecific primers was incorporated. PCR was performed on RotorGeneQ real-time analyzer on a 100-well Gene Disk (Qiagen, Milan, Italy) in two separate tubes for normal and mutated alleles. In all, 20 nanograms of genomic DNA were amplified in a 40-cycle PCR at an annealing temperature of 61 °C. All reactions were carried out in a final volume of 20 ul containing 1X Brilliant SYBR Green QPCR master mix (Stratagene, Cedar Creek, TX, USA) and 100 nM of both forward and reverse primers. Cell lines OCI-LY19 (MYD88 wt) and OCI-LY3 (MYD88 MUT, L265P) were used to construct two different standard curves by dilution series of 7 different concentrations ranging from 40 ng/µl to 0.08 ng/µl corresponding to allele burdens ranging from 100% to 0.5%. Allele burden quantification was performed by the ratio MYD88 L265P mutated/MYD88 (mutant and wild-type alleles).

Mutation analysis of CXCR4 using Sanger sequencing

The C-terminal domain of the CXCR4 gene was sequenced by Sanger sequencing. The forward PCR primer 5'-CATCCTGGCTTTCTTCGCCT-3' and reverse PCR primer 5'-TTGCTGTATGTCTCGTGGTAGG-3' were designed to amplify a 572 bp fragment. PCR was carried out in a final volume of 25 µl containing 50 ng genomic DNA, 1X reaction buffer, 0.2 µM of each primer, 200 µM dNTPs, 2 mM MgCl2 and 2.5 U of HotStarTaq (Qiagen, Milan, Italy). PCR consisted of an initial denaturation step of 15 minutes at 95°C, followed by 35 cycles of 95°C for 30 seconds, 60°C for 30 seconds and 72°C for 60 seconds, with a final extension step of 10 minutes at 72°C. PCR products were purified and sequenced using BigDye® Terminator v3.1 Cycle Sequencing Kit and an ABI 3500 automatic sequencer (Applied Biosystems, Foster City, CA, USA).

Sequences were aligned to the corresponding germline RefSeqGene (NG_011587.1) using the MultAlin software after manual curation to detect variants.

2

Characteristic	IgM MGUS (n=130)	WM (n=130)
Age (years), median (range)	64 (20-83)	65 (27-86)
Sex (male/female),% of patients	56/44	59/41
Hemoglobin (g/dL), median (range)	13.8 (10-17.4)	12.9 (6.1-16.1)
Platelets (x10 ⁹ /L), median (range)	241 (16-593)	258 (34-800)
IgM levels (mg/dL), median (range)	433 (101-4728)	1240 (60-8940)
Serum albumin (g/dL), median (range)	4.2 (2.9-5)	4.1 (2.3-4.9)
Abnormal serum free light chain k/λ ratio, % of patients	25	67
β_2 -microglobulin (mcg/L), median (range)	1893 (900-6820)	2662 (1230-11600)
Detectable BJ proteinuria, % of patients	22	49
Bone marrow involvement by IHC, %, median (range)	NA	35 (0-90)
Extramedullary involvement, % of patients	NA	23

Table 1. Clinical characteristics of patients according to diagnosis

NA= not applicable

Table 2. Correlation of CXCR4 mutational status with clinical characteristics andMYD88 allele burden in WM patients

Characteristic	CXCR4 mutated	CXCR4 wild type	P value
Age (years), median (range)	67 (44-83)	65 (37-85)	>0.900
Sex (male/female),% of patients	45/55	66/34	0.121
Hemoglobin (g/dL), median (range)	12.2 (8.3-16.1)	13.3 (8-16)	0.113
Platelets (x10 ⁹ /L), median (range)	246 (69-368)	262 (65-548)	0.490
Serum M-protein (g/L), median (range)	1 (0.1-2.9)	1.3 (0.2-6.3)	0.316
Serum albumin (g/dL), median (range)	4.2 (2.5-4.8)	4.1 (2.3-4.9)	>0.900
Abnormal serum free light chain k/λ ratio, % of patients	64	66	>0.900
β_2 -microglobulin (mcg/L), median (range)	2281 (1430-4360)	2530 (1230-10465)	0.761
Detectable BJ proteinuria, % of patients	40	48	0.776
Bone marrow involvement by IHC, %, median (range)	50 (5-90)	30 (0-90)	0.042
Extramedullary involvement, % of patients	20	19	>0.900
MYD88 allele burden (%), median (range)	24.5 (4.3 – 93.3)	9.4 (0.1 – 49.7)	0.010

Table 3. Mutually-adjusted effect of CXCR4 mutation and other clinical factors onrisk of progression to symptomatic WM requiring treatment

Covariates	Hazard ratio	95% confidence interval	P value
CXCR4	20.15	2.12-191	0.009
Hemoglobin levels	0.98	0.59-1.63	0.951
BM infiltration %	0.98	0.94-1.02	0.218
Serum monoclonal protein	4.76	1.48-15.28	0.009