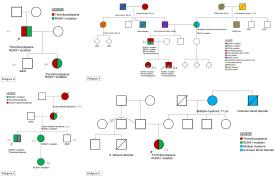
## Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation

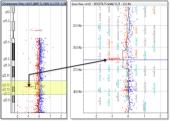
Rashmi Kanagal-Shamanna,<sup>†1</sup> Sanam Loghavi,<sup>1</sup> Courtney D. DiNardo,<sup>2</sup> L. Jeffrey Medeiros,<sup>1</sup> Guillermo Garcia-Manero,<sup>2</sup> Elias Jabbour,<sup>2</sup> Mark J. Routbort,<sup>1</sup> Rajyalakshmi Luthra,<sup>1</sup> Carlos E. Bueso-Ramos<sup>1</sup> and Joseph D. Khoury<sup>†1</sup>

<sup>1</sup>Department of Hematopathology and <sup>2</sup>Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.167726

Received: March 17, 2017. Accepted: June 20, 2017. Pre-published: June 28, 2017.


Correspondence: rkanagal@mdanderson.org or jkhoury@mdanderson.org


**Supplementary Figure S1. Pedigrees of the FPDMM families A-C.** Within the pedigrees, squares represent males; circles, females; the color legends for *RUNX1* mutation, thrombocytopenia and other parameters are provided for each of the pedigrees separately.

**Supplementary Figure S2. Pedigrees of the FPDMM families D-G.** Within the pedigrees, squares represent males; circles, females; the color legends for *RUNX1* mutation, thrombocytopenia and other parameters are provided for each of the pedigrees separately.

**Supplementary Figure S3.** Large (intragenic) deletion of exons 1-6 of the *RUNX1* gene that characterized pedigree C was detected using array-based comparative genomic hybridization. This alteration was not detected using mutation profiling by targeted amplicon-based next-generation sequencing.





