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The identification of minimal residual disease is the primary diag-
nostic finding which predicts relapse in patients treated for acute
myeloid leukemia. Ultrasensitive detection of minimal residual

disease would enable better patient risk stratification and could open
opportunities for early therapeutic intervention.  Herein we apply single
molecule molecular inversion probe capture, a technology combining
multiplexed targeted sequencing with error correction schemes based
on molecular barcoding, in order to detect mutations identifying mini-
mal residual disease with ultrasensitive and quantitative precision.  We
designed a single molecule molecular inversion probe capture panel
spanning >50 kb and targeting 32 factors relevant to acute myeloid
leukemia pathogenesis. We demonstrate linearity and quantitative pre-
cision over 100-fold relative abundance of mutant cells (1 in 100 to 1 in
1,500), with estimated error rates approaching 1 in 1,200 base pairs
sequenced and maximum theoretical limits of detection exceeding 1 in
60,000 mutant alleles. In 3 of 4 longitudinally collected specimens from
patients with acute myeloid leukemia, we find that single molecule
molecular inversion probe capture detects somatic mutations identify-
ing minimal residual disease at substantially earlier time points and with
greater sensitivity than clinical diagnostic approaches used as current
standard of care (flow cytometry and conventional molecular diagnosis),
and identifies persisting neoplastic cells during clinical remission. In 2
patients, single molecule molecular inversion probe capture detected
heterogeneous, subclonal acute myeloid leukemia populations carrying
distinct mutational signatures. Single molecule molecular inversion
probe technology uniquely couples scalable target enrichment with
sequence read error correction, providing an integrated, ultrasensitive
approach for detecting minimal residual disease identifying mutations.
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ABSTRACT

Intrtoduction

Acute myeloid leukemia (AML) is a highly aggressive, immature hematopoietic
neoplasm with significant mortality and morbidity. Despite sustained improve-
ments in our understanding of the mechanisms underlying this disease, persistent
challenges regarding improving patient outcomes remain.  Individuals with AML
who can tolerate hematopoietic stem cell transplantation have enjoyed substantial
improvements in disease-free and overall survival, but even so, clinical relapse is a
significant challenge for many patients, particularly for those who receive only
conventional chemotherapy treatments. Several independent studies have shown
that the detection of minimal residual disease (MRD), defined as small numbers of
neoplastic cells which persist after cancer therapy, is a key prognostic variable in
predicting disease relapse in the post-treatment setting of AML.1–5 In current prac-
tice, MRD may be assessed by a variety of disparate molecular or phenotypic
assessment techniques including detection of abnormal immunophenotype by
flow cytometry,6,7 fluorescent in situ hybridization (FISH)/cytogenetics,8 and real
time polymerase chain reaction (RT-PCR) for individual AML-specific genetic



lesions.2,9,10 These methods have variable performance
characteristics, and no single phenotypic or molecular sig-
nature of disease likely exists, ultimately making current
patient stratification achievable with variable levels of
success. Consequently, robust and standardized methods
for identifying MRD are critically needed.11
For many hematologic disorders, next-generation

sequencing has emerged as an appealing strategy for
detecting and monitoring MRD.12-14 In the case of AML,
whole genome and exome sequencing15-18 has revealed
that the number of mutations occurring in AML is limited,
with estimates of the mutational burden of any given
malignancy being in the order of only 20 to 30 events.15
This presents a special challenge in detecting meaningful
genomic markers of AML MRD, particularly in sub-types
that lack recurrent genomic fusions such as acute promye-
locytic leukemia with PML-RARA. Successful strategies to
detect AML MRD using high-throughput sequencing have
consequently focused on 1 of 2 strategies. The first of
these is focused deep sequence analysis of recurrent muta-
tional hotspots, such as those occurring in NPM1,19
RUNX1,20 or FLT3.21 Although potentially powerful molec-

ular markers of malignancy, these variants are not neces-
sarily present nor informative in all patients.  Restricting
analysis to single genes or sites also limits the ability to
detect and monitor clonal heterogeneity, which is thought
to be an important feature of AML pathogenesis.22,23  The
second strategy is to perform whole genome or whole
exome sequencing of fulminant malignancy in order to
catalog informative, patient-specific mutations which can
be later targeted using personalized assays and followed
over time.24-26 Although more comprehensive, this latter
strategy is both more costly and more time consuming,27
and in practice also requires the subsequent validation of
patient-specific assays for MRD detection.  
To improve upon existing paradigms for conventional

and next-generation sequencing-based AML MRD detec-
tion, herein we adapt single molecule molecular inversion
probes (smMIPs)28,29 in order to interrogate common
genetic lesions in AML with ultrasensitive limits of detec-
tion.  smMIP technology unites multiplexed targeted
sequencing with an error correction strategy based on
unique molecular identifiers (UMIDs),30 degenerate
oligonucleotide barcodes that mark sequence reads
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Table 1. Patient specimens and clinical testing results.
Patient Day from initial diagnosis Days post-transplant Molecular results Flow cytometry results

83 N/A** FLT3 and NPM1 negative NP*
196 N/A FLT3 and NPM1 negative NP

1 329 N/A FLT3 Positive, 35%. NPM1 Positive. NP
412 N/A FLT3 Positive, 15%. NPM1 Positive.  NP
531 N/A FLT3 Positive, 97%. NPM1 Positive. 98% abnormal cells
0 -97 FLT3 Negative. NPM1 Positive. 0.98% abnormal cells 

(regenerating blasts vs. MRD)
69 28 NP Negative for abnormal cells

2 125 84 NP Negative for abnormal cells
393 352 FLT3 and NPM1 negative 0.14% abnormal cells 

(suspicious but not diagnostic 
for MRD)

397 356 NP NP
461 420 FLT3 negative Negative for abnormal cells
579 538 NP Negative for abnormal cells
746 705 FLT3 Positive, 10.46% NP
0 -115 FLT3 and NPM1 negative NP
94 -21 FLT3 and NPM1 negative Negative for abnormal cells
143 28 FLT3 and NPM1 negative Negative for abnormal cells
269 154 FLT3 and NPM1 negative Negative for abnormal cells

3 346 231 FLT3 and NPM1 negative Negative for abnormal cells
437 322 FLT3 and NPM1 negative Negative for abnormal cells
542 427 FLT3 and NPM1 negative Negative for abnormal cells
584 469 FLT3 and NPM1 negative Negative for abnormal cells
599 484 JAK2mutation negative NP
269 -917 NPM1 Negative. NP
1083 -103 NPM1 Negative. Negative for abnormal cells

4 1214 28 NPM1 Negative. Negative for abnormal cells
1556 370 NPM1 Negative. Negative for abnormal cells

*Not performed. **Not Applicable. MRD: minimal residual disease.



derived from a common progenitor molecule and which
allow for random sequencing errors to be eliminated
through oversampling and consensus calling (Figure 1).
When combined, these features enable simultaneous
enrichment, detection, and quantitation of single
nucleotide polymorphisms and small insertions and dele-
tions in targeted genomic regions with a sensitivity greatly
exceeding27,28 the inherent error rate of next-generation
sequencing (~2% per nucleotide).31 These pilot studies
define the performance characteristics of smMIP capture
as a molecular diagnostic, and demonstrate the utility of
the approach when applied in clinical practice.

Methods

Samples and Cell Lines
Residual, clinical samples were obtained and de-identified

according to the University of Washington Institutional Review
Board guidelines.  This project was approved by the University of
Washington Human Subjects Division and was conducted in
accordance with the Declaration of Helsinki. A total of 25 sam-
ples, derived from prior, routine sampling from 4 patients were
used in this pilot study (Table 1, Online Supplementary Table S1).
All patients had a confirmed histologic or flow cytometry diagno-
sis of acute myeloid leukemia and were selected for further study
if sufficient residual DNA (at least 500 ng) was available for analy-
sis.  Staging marrows from lymphoma patients under 40 years of
age for whom myeloid flow cytometry was pre-screened as neg-
ative were used as normal bone marrow controls.
For linearity and sensitivity studies, suspensions of cell lines and

normal human bone marrow were quantified using flow cytome-
try, combined in defined proportions, and incremental serial dilu-
tions were prepared.  Cell lines were obtained from Deutsche
Sammlung von Mikroorganismen und Zellkulturen (cell lines KM-
H2, OCI-AML3, and L1236, Braunschweig, Germany) or ATCC
(cell line Raji, Manassas, VA, USA) and were cultured in accor-
dance with supplier specifications. NA12878 genomic DNA was
obtained from Coriell Biorepository (Camden, NJ, USA).

smMIP design, capture, and sequencing
A smMIP capture panel was designed against AML-relevant tar-

gets (Table 2, Online Supplementary Table S2), identifying polymor-
phisms carried in cell lines, and other clinically relevant genes
(ABL1, ALK, JAK2, NT5C2, and ROS1) using the program
Molecular Interaction Potential Generator (MIPgen).32 As detailed
in the Online Supplementary Methods, 500 ng genomic DNA was
hybridized with the panel, exonuclease-treated, and PCR-ampli-
fied to generate sequencing libraries. Single libraries were pre-
pared from all specimens in this study. Sequencing was performed
using the 300 cycle Illumina NextSeq 500/550 High Output v2 kit
(Illumina, San Diego, CA, USA).

Data analysis Pipeline
Sequencing data were analyzed as described in full in the Online

Supplementary Methods. Briefly, reads were demultiplexed, regions
corresponding to the smMIP backbone were removed, and read
pairs self-assembled. After mapping to the human genome (hg37),
reads corresponding to each smMIP were grouped based on
whether their UMID was contained in 2, or more than 2 inde-
pendent reads, with UMIDs represented in only 1 sequence read
discarded.  Single nucleotide polymorphisms and indels were
called on these read groups using a “majority rule” approach. We
applied an empiric site- and mutation-specific error model in order
to assess the significance of the observed variation at each site in
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Figure 1. Overview of smMIP capture. (A) smMIPs are  single-stranded (ss)DNA
oligonucleotides with domains at both ends that are complimentary to genomic
targets of interest (gray), each flanked by a 4bp fully degenerate UMID
sequence (red), totaling an 8bp molecular tag, and linked by a backbone
sequence common to all probes (black). After hybridization of probes to DNA,
(B) DNA polymerase copies targeted genomic DNA by extension of the free
probe arm and (C) the smMIP is joined into a covalently sealed circle by the
action of DNA ligase.   After exonuclease digestion of unbound probes and free
genomic DNA, (D) PCR primed against the defined smMIP backbone is per-
formed to amplify successful capture events and their identifying UMIDs. (E)
Paired-end, high-throughput sequencing is performed. (F) Derived paired-end
reads are merged into a single, contiguous read, providing inherent intra-read
error correction.  (G) A consensus sequence is generated out of all reads shar-
ing a common UMID. Low prevalence, random errors are canceled out. (H)
Extremely low variant allele frequencies can be accurately quantified by assay-
ing the fraction of error-corrected reads bearing a mutation of interest out of the
larger population of read groups derived from unique UMID-tagged smMIPs.
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the smMIP panel, and sites with P>0.005 were excluded as poten-
tial artefacts.  
In summary, the analysis pipeline expresses variant calls in

terms of the number of unique smMIP capture events which are
consistent with a given variant over the total number of smMIP
capture events overlying that site, and assesses the statistical sig-
nificance of individual variants.

Data availability
Sequence data generated for this study are available from the

National Center for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) under study accession number SRP097634.    

Results

smMIP panel design and performance
We designed a smMIP panel targeting the most recur-

rently mutated genes in AML15,33 and other high-yield or
actionable mutational targets, featuring a combination of
full gene tiling and focused hotspot interrogation as appro-
priate to the selected targets (Table 2). After rebalancing
the relative concentration of individual probes in the cap-
ture pool in order to promote evenness of performance,
and subsequently removing smMIPs with persistently low
performance (n=83), the final capture design included 511
probes which spanned a total of 50,176 base pairs (bp) of

genomic DNA (Online Supplementary Table S2). With an
allotment of 1.05X106 ± 5.9X106 (average ± standard devi-
ation) reads per specimen, an average of 17,763 unique
UMIDs were obtained per smMIP (range of 973 to
52,437), with an average of 11.2 sequence read pairs per
UMID (Figure 2A, Online Supplementary Figure S1).  Given
our criteria for data filtering, these performance character-
istics correspond to an average theoretical sensitivity of ~1
in 9,000 mutant alleles. Minor variations were seen among
replicates, possibly due to differences in DNA quality.

Error reduction and error profile
In order to initially evaluate the performance of smMIP-

mediated error correction compared to conventional
sequencing we analyzed 2 specimens, reference cell line
NA12878 and a bone marrow sample derived from a
healthy donor, which were subjected to smMIP capture
and sequencing.  After masking sites of variation that
were consistent with heterozygous or homozygous
germline polymorphisms, we quantified the number of
variant calls derived both from raw sequencing reads and
after applying smMIP-mediated error correction (Table 3).
Applying standard cutoffs for accepting variants with
equal to or greater than 2% variant allele frequency31

(Online Supplementary Methods), conventional deep
sequencing registered an average of 1,047 ± 17 (average ±
standard deviation) artefactual single nucleotide variant
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Figure 2. Performance characteristics of single molecule molecular inver-
sion probes (smMIPs). (A) Number of unique capture events recovered per
smMIP (arbitrarily sorted along X-axis) for 3 different control specimens. (B)
Linearity and reproducibility of the smMIP panel for 13 identifying loci in
immortalized cell lines spiked into normal human bone marrow cells at dif-
ferent levels of relative abundance. Error bars indicate standard deviation.

A B



calls and 10 ± 2 indels, for a cumulative error frequency of
1 artefact reaching detection thresholds per 50 nucleotides
sequenced.  Using parameters enabled to detect low
prevalence variation (Online Supplementary Methods), the
conventional deep sequencing analysis approach
increased errors considerably, resulting in 65,127 ± 1464
(average ± standard deviation) artefactual single
nucleotide variants and 6,471 ± 334 (average ± standard
deviation) artefactual indels per specimen, equating to an
average of 1.42 different low prevalence variants detected
per nucleotide sequenced.  By contrast, using smMIP cap-
ture and associated analytic error modeling, we identified
a total of 1,025±664 (average ± standard deviation) single
nucleotide variants and 220±2 (average ± standard devia-
tion) indels per specimen occurring at any level of
detectable abundance.  This equates to 1 error per 40 bp
sequenced, comparable to error rates seen using deep
sequencing with standard variant calling, and representing
a 60-fold reduction in error rate over ultrasensitive muta-
tion detection by conventional sequencing.
However, smMIP capture resulted in a non-uniform dis-

tribution of errors across the landscape of potential
nucleotide substitutions (Table 3), for which there was a
predominance of transversions involving cytosine and
guanine.  This spectrum of changes is consistent with a
low frequency of oxidative DNA damage (G>T and
C>A)25,34 and spontaneous deamination of 5-methylcyto-
sine (C>T and G>A),28 which exist in template molecules
prior to sequencing. Interestingly, an elevation of these
error types was not observed for either of the convention-
al sequencing analysis approaches, presumably because
DNA damage events are too low frequency to be detect-
ed, or are masked by random, higher frequency sequenc-
ing errors overlapping these sites.  In light of these obser-
vations, we conclude that much of the low level variation
detected by smMIP capture represents pre-analytic DNA
damage, rather than sequencing errors per se.  Removing
these state changes from consideration, the error rate of
smMIP capture is estimated to approach 1 error per 1,200
bp sequenced, an order of magnitude less than that seen
with standard variant calling and more than 2 orders of
magnitude less than seen for ultrasensitive calls made
without error correction.  

Linearity and quantitative precision
In order to assess the effectiveness with which smMIP

capture was able to recover known mutations at various
levels of relative abundance, we constructed a series of
synthetic specimens where calibrated numbers of cells
from normal human bone marrow were combined with
lesser proportions of different immortalized human cell
lines marked by identifying SNPs and indels.35  We evaluat-
ed 2-fold serial dilutions, ranging from 1% to 0.0625% rel-
ative abundance, of 4 different cell lines representing a total
of 14 identifying variants (although 2 of these variants,
MYC c.G62C and c.G162C, were targeted by a single
smMIP).  We were able to recover all but 1 of the polymor-
phisms occurring at the lowest dilution examined (Figure
2B, Online Supplementary Table S3). Linearity and quantita-
tion of variant allele frequency was achieved over 2 orders
of magnitude, with consistency across samples and the
individual mutations typed (coefficient of variation range
of 0.41 to 0.74, depending on dilution).  These data demon-
strate that smMIP capture has both sensitivity and quanti-
tative precision to at least 1 in 1,500 mutant alleles.  

Detection of MRD in longitudinal patient samples
using smMIP capture
To investigate the potential of smMIPs to identify MRD

from patient samples, we examined a cohort of 4 patients
for whom MRD had been evaluated clinically over multi-
ple time points (Table 1). Two of the patients in our cohort
relapsed during the period of sample collection, whereas
the other 2 had negative MRD detection results at all time
points. The AML at initial diagnosis from each of these
patients was positive for NPM1mutation by conventional
testing, providing a known molecular marker against
which to benchmark performance. We subjected each
specimen to smMIP capture and compared the ability of
that approach to detect MRD with the results of conven-
tional diagnostics that had been applied during the course
of patient care (Table 1, Figure 3, Online Supplementary
Table S4).
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Table 2. smMIP panel design.
Gene Capture Nucleotides Number

Design sequenced (bp) smMIPs

ABL1 Hotspot 817 8
ALK Hotspot 333 3
BRAF Hotspot 222 2
CEBPA Full Gene 203 2
DNMT3A Hotspot 111 1
EZH2 Full Gene 3117 32
FAM5C Full Gene 2583 28
FLT3 Hotspot 873 8
HNRNPK Full Gene 2281 24
IDH1 Hotspot 111 1
IDH2 Full Gene 205 2
JAK2 Hotspot 120 1
KIT Hotspot 1041 10
KRAS Hotspot 333 3
NPM1 Hotspot 89 1
NRAS Hotspot 222 2
NT5C2 Hotspot 444 4
PHF6 Full Gene 927 9
PIK3CA Hotspot 333 3
PPM1D Full Gene 1971 22
PTPN11 Full Gene 2418 24
RAD21 Full Gene 2410 25
RET Hotspot 111 1
ROS1 Hotspot 333 3
RUNX1 Full Gene 1894 19
SMC1A Full Gene 5060 53
SMC3 Full Gene 5147 52
STAG2 Full Gene 5163 53
TET2 Full Gene 6326 66
TP53 Full Gene 2069 22
U2AF1 Hotspot 222 2
WT1 Full Gene 1688 16
Cell line variants Hotspot 999 9
Total N/A 50176 511
N/A: not applicable; smMIPs: single molecule molecular inversion probes.



In 1 patient (patient 4), no low prevalence somatic
mutations were identified in any specimen, consistent
with the clinical diagnosis of the patient being free of
detectable MRD. By contrast, and remarkably, for the
remaining 3 patients multiple somatic mutations identify-
ing the presence of MRD were observed at every time
point interrogated, regardless of clinical diagnostic status.
Between 4 and 7 variants were identified in these cases,
representing mutations in coding, intronic, and UTR
regions, to a minimum variant allele frequency of 0.02%
(Online Supplementary Table S4). Despite their low preva-
lence, all reported variants occurred at levels significantly
higher (P<0.005) than predicted under our empiric error
models, and can therefore be ascribed to a biological,
rather than artefactual, source.
In order to provide orthologous validation of MRD in

specimens where abnormal cells were not identified by
standard clinical diagnostics, we performed ultrasensitive
detection of NPM1 mutations using a previously
described, targeted next-generation sequencing assay19

(Figure 3, Online Supplementary Table S4). Although sensi-
tivity of the NPM1 assay is validated only to a variant
allele frequency of 0.03%, quantitation of NPM1-mutated
cells by this independent assay closely mirrored the results
obtained using smMIP capture, although at several time
points smMIP capture identified the presence of MRD at
levels occurring below the limits of detection of the target-
ed NPM1 assay. These results provide support for the clin-

ical validity and quantitative measurement of low preva-
lence mutations detected by smMIP capture.

MRD heterogeneity in patient samples
AML is considered an oligoclonal disease, marked by

the emergence of sublineages which evolve over time and
which may exhibit different functional properties from
one another,36-38 and we therefore assessed our ability to
identify genetically distinct subclones in our patient
cohort.  In 2 patient specimens we observed dynamic
changes in the mutations seen over time, which is consis-
tent with the recovery of discrete sublineages (Figure 3,
Online Supplementary Table S4). In patient 2, we detected 2
low frequency variants in TP53, which initially emerged
on day 579 following initial diagnosis and persisted
through the next and final timepoint on day 746.
However, these 2 mutations did not increase in abundance
at the time that AML relapse was clinically diagnosed; by
contrast, the 5 mutations which were originally identified
in the patient’s neoplasm markedly increased  in preva-
lence. These finding suggest both that a discrete subclonal
lineage of TP53-mutated hematogenic stem and progeni-
tor cells39 evolved in the patient over time, and that cells
most closely related to the patient’s original neoplasm,
rather than this subclone, were responsible for the
patient’s relapse.  
In patient 3, a different pattern was seen. One distinc-

tion is that the variant allele frequency of somatic muta-
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Figure 3.  Detection of MRD and clonal heterogeneity in patient specimens
using smMIP capture. Results are shown for patient 1 (A), patient 2 (B), and
patient 3 (C).  The variant allele frequency of the individual somatic muta-
tions identified in each case are plotted as a function of time (in days) the
first sampling in the time series and, where available, days status post-
transplant.  Days marked in red indicate time points at which neoplastic
cells were detected by conventional clinical assays.   Correlation of results
with alternative testing for NPM1 mutation are indicated for each case
(NPM1NGS, double thick line).
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tions identified in this background was considerably
lower than for the other 2 patients, potentially reflecting
that this patient did not undergo relapse during the period
of study. Additionally, the relative abundance of individ-
ual mutations did not correlate in any obvious pattern,
and instead fluctuated independently. These observations
are consistent with the presence of multiple subclones car-
rying distinct identifying mutations, without any single
lineage coming to dominate the environment.

Discussion

For next-generation sequencing applications intended to
detect low prevalence variation in heterogeneous samples,
inherent error rates of sequencing platforms rapidly
become limiting by conventional workflows; even with
the highest fidelity chemistries, single nucleotide variants
occurring below ~2% relative abundance cannot be reli-
ably distinguished from artefacts.31  Various strategies for
circumventing this problem have been demonstrated,30,40-44
each with their own comparative advantages and disad-
vantages. smMIP technology uniquely couples scalable
target enrichment with sequence read error correction,
providing an integrated approach which is both facile and
quantitative.28 Moreover, due to the modular nature of
smMIP assays, additional targets can be incorporated into
an existing panel without necessitating assay redesign or
resynthesis of existing probes, allowing for ready expan-
sion.
In order to detect low abundance mutations which iden-

tify AML MRD, we have designed a smMIP panel targeted
against coding genes and mutational hotspots relevant to

AML pathogenesis, and have developed optimized proto-
cols and analytic techniques to maximize sensitivity.
Using cell line dilutions, we demonstrated that smMIP
capture is able to interrogate relevant SNPs and indels
occurring in AML with an average sensitivity of at least
1:1,500 mutant alleles. This sensitivity for low prevalence
variation both exceeds that of conventional deep sequenc-
ing by 3 orders of magnitude,27 and surpasses the limits of
detection previously achieved using smMIP technology by
1 order of magnitude.28,29 Nevertheless, the UMID counts
obtained per smMIP enable theoretical limits of detection
exceeding even these figures, in the order of 1 in 9,000
mutant alleles for a probe with average performance and
up to 1 in 61,000 for the best performers. It is noteworthy
that the levels of sensitivity achieved using smMIP capture
approach those achievable by error corrected deep
sequencing of single mutational targets in AML,19,25 but the
technology is distinguished from those methods in that
ultrasensitive performance is obtained over a far greater
breadth of coverage; in this application, greater than 50 kb
of genomic sequence were interrogated.  However, the
sensitivity of smMIP capture scales linearly with reaction
size; given sufficient quantities of DNA template and allo-
cated sequencing coverage, the approach should be able to
achieve detection of low prevalence mutations exceeding
the limits practically demonstrated in the study herein.  
A measurable amount of low prevalence genetic varia-

tion identified in our test materials corresponded to arte-
facts resulting from DNA deamination and oxidative dam-
age.25,28,34 In practice, these artefacts can be identified and
distinguished from true mutations by capturing both
strands of DNA independently and evaluating concur-
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Table 3. Single nucleotide variant error rates before and after single molecule molecular inversion probe (smMIP)-mediated error correction.
Conventional sequencing Conventional sequencing smMIP-mediated
with 2% variant allele with ultrasensitive ultrasensitive variant calling
frequency calling variant calling

Error Type Average errors Standard Average errors Standard Average errors Standard
per base deviation per base deviation per base deviation

A>N 8.334x10-3 2.401x10-4 1.182 4.791x10-2 1.303x10-3 2.058x10-4

C>N 3.537x10-2 2.199x10-3 1.371 1.150x10-2 5.205x10-2 2.712x10-2

G>N 3.005x10-2 2.853x10-3 1.419 9.317x10-3 3.540x10-2 1.810x10-2

T>N 1.452x10-2 2.575x10-3 1.218 5.325x10-2 8.941x10-4 1.073x10-4

A>C 2.847x10-3 3.430x10-5 0.281 3.471x10-2 3.087x10-4 3.430x10-5

A>G 2.881x10-3 6.860x10-5 0.450 7.683x10-3 6.517x10-4 1.715x10-4

A>T 2.607x10-3 1.372x10-4 0.451 5.522x10-3 3.430x10-4 6.860x10-5

C>A 2.708x10-2 2.703x10-3 0.489 5.452x10-3 3.775x10-2 2.190x10-2

C>G 5.498x10-3 4.582x10-4 0.447 1.026x10-2 3.665x10-4 9.163x10-5

C>T 2.795x10-3 4.582x10-5 0.435 6.689x10-3 1.393x10-2 5.315x10-3

G>A 5.751x10-3 4.012x10-4 0.461 9.807x10-4 1.092x10-2 4.413x10-3

G>C 9.451x10-3 1.783x10-4 0.474 2.675x10-3 7.133x10-4 4.458x10-4

G>T 1.484x10-2 2.274x10-3 0.484 5.662x10-3 2.376x10-2 1.413x10-2

T>A 8.869x10-3 2.790x10-3 0.475 8.583x10-4 1.073x10-4 3.576x10-5

T>C 2.503x10-3 0 0.444 7.832x10-3 5.722x10-4 1.431x10-4

T>G 3.147x10-3 2.146x10-4 0.299 4.456x10-2 2.146x10-4 7.153x10-5

Total average errors per base 2.067x10-2 3.255x10-4 1.285 2.888x10-2 1.966x10-2 9.815x10-3

Excluding C>A, C>T, G>A, G>T9.677x10-3 8.385x10-4 0.877 3.01x10-2 8.582x10-4 1.480x10-4



rence between strands at sites of variation.29 However, this
measure would require twice as many smMIPs and subse-
quent sequence coverage, with a negative practical impact
on sensitivity. We have found that the incidence of these
artefacts is non-limiting in our application, and have there-
fore elected for a minimally redundant capture design in
order to maximize the detection of low prevalence alleles.
In comparison with existing, standard methods of clini-

cal MRD detection, smMIP capture was able to identify
mutations indicative of MRD with greater sensitivity and
earlier in the course of patient care, up to 677 days before
abnormal cells were detectable using standard of care
diagnostics. In 3 of 4 patients with longitudinal specimens
available, smMIP capture identified mutations consistent
with MRD at all time points. Although the finding of low
level neoplastic cells during remission is somewhat sur-
prising, it is compatible with prior work by our group
using ultrasensitive MRD detection methods targeting the
NPM1 locus in AML patients,19 and also with the results of
other groups using ultrasensitive sequencing approaches.38
It has been argued that persistent, low level MRD indi-
cates successful immune surveillance and suppression of
abnormal cells rather than necessarily predicting the early
stages of relapse.11 This view is supported in our current
study by the long periods of time over which background
levels of MRD were identified without a marked increase
in the size of the abnormal cell population. As such, a
more informative biomarker for AML relapse may prove
to be the growth kinetics of low prevalence abnormal cell
populations,19 a strategy which would be facilitated by the
quantitative nature of smMIP capture.  
smMIP capture has proven robust and has a workflow

which is compatible with clinical implementation and
timescales (2 days for library preparation and 1 to 2 days
for sequencing, dependent on read requirements, and scal-
able computation time), and is expected to become more
rapid with continued improvements to sequencing speed
and throughput. However, there are limitations to the
approach. One consideration applicable to all ultrasensi-
tive approaches is the amount of sequencing power
required to interrogate enough individual molecules to
enable the detection of low prevalence mutations. In our
studies, approximately 80 to 100 million sequence reads
per specimen were needed to recover most unique capture
events with a minimal redundancy of 2 more reads each.
This currently incurs practical limits to the assay in terms
of sequencing costs and also the computational time and
resources required to analyze the data. Read requirements
and computation time should scale linearly with the size
of the capture design, so these limitations could be
bypassed in exchange for a decreased breadth of the assay.
It should also be noted that the number of reads required
to detect a mutation by smMIP capture is inversely pro-
portional to its variant allele frequency; although an aver-

age of 80 million reads were needed to identify mutations
at a 0.0625% variant allele frequency, an average of only 6
million reads could reliably detect minor alleles at 1% rel-
ative abundance (Online Supplementary Figure S2).
Detection of mutations occurring above the limits of
detection by smMIP capture can consequently be
achieved with more restricted read requirements.
Separately, given the limited number of nucleotides which
can be efficiently captured by an individual smMIP (~160
bp), it is also an inherent limitation of this approach that
large-scale indels and more complex rearrangements, such
as sizable internal tandem duplications, inversions, and
translocations, cannot be recovered by the technology.
Additionally, some regions of the genome are less
amenable to smMIP capture due to relative  guanine-cyto-
sine (GC) content and other factors,32 a bias which can be
improved but not entirely corrected by empiric rebalanc-
ing, resulting in uneven performance for a minority of
probes.  Lastly, although our capture design is relatively
large and is directed against high-yield targets, it is not
comprehensive and it is likely that mutations identifying
MRD will not be determined in all cases of AML.  Based
on published AML exome sequence data,15 our capture
panel is predicted to identify cancer-associated mutations
in ~80% of AML specimens.
Despite these limitations, we have shown in this pilot

study that smMIP capture is in principle well suited to the
practical application of monitoring MRD in AML patients.
Aside from providing ultrasensitive and quantitative detec-
tion of mutations, smMIPs can simultaneously interrogate a
large number of high-yield mutational targets for MRD-
identifying mutations. This combination of features enables
screening for MRD without developing panels specific to
individual patients,24-26 and provides functional redundancy
and added robustness, both in being able to identify multi-
ple mutations which may serve as markers of disease, and
in being able to monitor the emergence of genetically dis-
tinct AML subclones which may have different functional
properties than the initial malignancy.36,37 The ability to
detect MRD-associated mutations with levels of sensitivity
far exceeding those achievable by current approaches will
require new criteria for assessing the significance of positive
findings. Future work will incorporate larger numbers of
patients and a greater variety of AML subtypes in order to
correlate clinical outcomes with sequencing results, and to
begin addressing this outstanding question.
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