Natural killer-cell counts are associated with molecular relapse-free survival after imatinib discontinuation in chronic myeloid leukemia: the IMMUNOSTIM study

Delphine Rea,^{1,2,3*} Guylaine Henry,⁴ Zena Khaznadar,^{1,5} Gabriel Etienne,^{3,6} François Guilhot,^{3,7} Franck Nicolini,^{3,8} Joelle Guilhot,^{3,7} Philippe Rousselot,^{3,9} Françoise Huguet,^{3,10} Laurence Legros,^{3,11} Martine Gardembas,^{3,12} Viviane Dubruille,^{3,13} Agnès Guerci-Bresler,^{3,14} Aude Charbonnier,^{3,15} Frédéric Maloisel,¹⁶ Jean-Christophe Ianotto,¹⁷ Bruno Villemagne,¹⁸ François-Xavier Mahon,^{3,6} Hélène Moins-Teisserenc,^{1,4,5} Nicolas Dulphy^{1,4,5*} and Antoine Toubert^{1,4,5}

¹INSERM UMRS-1160, Paris; ²Service d'Hématologie Adulte, Hôpital Saint-Louis, Paris; ³France Intergroupe des Leucémies Myéloïdes Chroniques (Fi-LMC), Institut Bergonié, Bordeaux; ⁴Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris; ⁵Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7; ⁶Service d'Oncologie Médicale, Institut Bergonié, Bordeaux; ⁷INSERM CIC 1402, CHU de Poitiers; ⁸Service d'Hématologie Clinique, CHU Lyon Sud, Pierre Bénite; ⁹Service d'Hématologie Oncologie et INSERM UMR-1173, Centre Hospitalier de Versailles, Le Chesnay; ¹⁰Service d'Hématologie, IUCT Oncopole, Toulouse; ¹¹Service d'Hématologie Clinique, Hôpital de l'Archet, CHU de Nice; ¹²Service des Maladies du Sang, CHRU Angers; ¹³Service d'Hématologie, Institut Paoli Cal-Môtel Dieu, Nantes; ¹⁴Service d'Hématologie, CHU Brabois, Vandoeuvre les Nancy; ¹⁵Service d'Onco-Hématologie, Institut Paoli Calmettes, Marseille; ¹⁶Groupe Oncologie-Maladies du Sang, Clinique Sainte Anne, Strasbourg; ¹⁷Service Hématologie Clinique, Hôpital Morvan, CHRU de Brest and ¹⁸Service Médecine Onco-hématologie, CH de la Roche sur Yon, France

*DR and ND contributed equally to this work.

©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.165001

Received: January 21, 2017. Accepted: May 8, 2017. Pre-published: May 18, 2017. Correspondence: delphine.rea@aphp.fr or nicolas.dulphy@univ-paris-diderot.fr

Online Supplement

Supplementary Methods

Immunophenotyping

To analyze T-cells, NK-cells and their subsets by flow cytometry, a 4-color staining of fresh blood was performed followed by red blood cell lysis. Leucocytes were acquired with a BD Biosciences a FACSCaliburTM and data were analyzed with the BD CellQuest software. PerCP-CD3 (clone SK7), PerCP-CD4 (clone SK3), PE-CD4 (clone SK3), PerCP-CD8 (clone SK1), PE-CD8 (clone SK1), APC-CD45RA (clone HI100), PE-CD27 (clone M-T271), APC-CD56 (clone B159), FITC-CD25 (clone 2A3) and FITC-CD16 (clone 3G8) were from BD Biosciences. FITC-CCR7 (clone 150503) was from R&D Systems). PE-CD127 (clone R34), and PE-NKG2D (clone ON72) were from Beckman Coulter. To analyze NK-receptor expression by flow cytometry on thawed PBMCs, an 8-color staining with mAb was performed, leucocytes were acquired with a BD Biosciences FACSCanto[™] II and data were analyzed with the DIVA v6.1.3 software. FITC-DNAM-1 (clone DX11), APC-H7-CD3 (clone SK7) and PercP-Cy5.5-CD56 (clone B159) were from BD Biosciences. PE-KIR2D (clone NKVFS1), PE-NKp30 (clone AF29-4D12), APC-NKp46 (clone 9E2) and Vioblue-CD57 (clone TB03) were from Miltenyi Biotec. PE-Cy7-NKG2A (clone Z199) and APC-CD94 (clone HP-3B1) were from Beckman Coulter. BV510-CD16 (clone 3G8) was from Ozyme.

NK-cell functional assays

To analyze CD107a and CD137 expression by flow cytometry on CD3⁻CD56⁺ NKcells in a degranulation assay, leucocytes stained with mAbs were acquired with a BD Biosciences FACSCanto[™] II and data were analyzed with the DIVA v6.1.3 software. APC- CD137 (clone 4B4-1), PE-Cy7-CD56 (clone B159) and APC-H7-CD3 (clone SK7) were from BD Biosciences and BV510-CD16 (clone 3G8) was from Ozyme). For IFN- γ detection by flow cytometry in CD56^{bright} NK-cells after cytokine stimulation, IFN- γ intracellular staining was performed using the AlexaFluor488-labelled B27 clone (BD Biosciences). Leucocytes were acquired with a BD Biosciences FACSCantoTM II and data were analyzed with the DIVA v6.1.3 software.

Supplementer	w Tabla S1	[aucocytos]	vmnhoevtoe	and T_coll	subsats at	hosolino
Supplemental	y rable SI.	Leucocytes, I	ympnocytes	anu 1-cen	subscis ai	Dasenne

Parameters	All (n=51)	Non-relapsing (n=23)	Relapsing (n=28)	p value*
Leucocytes/mm ³	4820 (2550-7860)	5020 (2550-7470)	4800 (3400-7860)	0.557
Lymphocytes/mm ³	1310 (720-2610)	1400 (810-2610)	1300 (720-1970)	0.185
CD3 ⁺ T-cells/mm ³	897 (315-1949)	896 (543-1949)	898 (315-1576)	0.172
$CD3^{+}CD4^{+}/mm^{3}$	534 (228-1248)	534 (352-1248)	538 (228-1021)	0.297
CD3 ⁺ CD8 ⁺ /mm ³	279 (72-998)	295 (77-998)	276 (72-562)	0.092
Ratio CD4/CD8	2.02 (0.5-14.2)	1.93 (0.5-5.94)	2.09 (0.79-14.2)	0.489
CD3 ⁺ CD4 ⁺ subsets				
Naïve (CD4 ⁺ CD45RA ⁺ CCR7 ⁺ CD27 ⁺)				
% CD4 ⁺	35.1 (8.7-75.9)	35.5 (13.1-57.7)	34.7 (8.7-75.9)	0.949
/mm ³	200 (32-774)	189 (82-286)	213 (32-774)	0.949
Central memory (CD4 ⁺ CD45RA ⁻ CCR7 ⁺)				
% CD4 ⁺	45.1 (19.8-74.7)	46.7 (25.1-74.7)	44.3 (19.8-64.6)	0.339
/mm ³	259 (80-570)	289 (120-570)	223 (80-394)	0.091
Effector memory (CD4 ⁺ CD45RA ⁻ CCR7 ⁻)				
% CD4 ⁺	15.7 (2.4-53)	13.6 (9.3-29.3)	18.9 (2.4-53)	0.171
/mm ³	91 (25-273)	97 (41-273)	85 (25-232)	0.974
Regulatory (CD4 ⁺ CD25 ⁺ CD127 ^{low/-})				
% CD4 ⁺	7 (1.2-13.1)	7.1 (1.2-12.1)	6.4 (3.2-13.1)	0.300
/mm ³	37 (4-94)	40 (4-94)	36 (12-53)	0.136
CD3 ⁺ CD8 ⁺ subsets				
Naïve (CD8 ⁺ CD45RA ⁺ CCR7 ⁺ CD27 ⁺)				
% CD8 ⁺	26.2 (6.5-71.9)	23.7 (6.5-62.7)	28 (7.5-71.9)	0.841
/mm ³	75 (9-239)	75 (28-239)	72 (9-236)	0.342
Central memory (CD8 ⁺ CD45RA ⁻ CCR7 ⁺)				
% CD8 ⁺	12 (1-38.6)	13.4 (1-23.7)	11.1 (2-38.6)	0.920
/mm ³	30 (2-113)	38 (2-110)	29 (6-113)	0.367
Effector memory (CD8 ⁺ CD45RA ⁻ CCR7 ⁻)				
% CD8 ⁺	24.2 (1.6-58.3)	20.7 (1.6-58.3)	27.9 (3.2-55.7)	0.325
/mm ³	61 (4-345)	64 (4-345)	56 (9-237)	0.972
Effector memory (CD8 ⁺ CD45RA ⁺ CCR7 ⁻)				
% CD8 ⁺	33.3 (6.8-84.6)	38.8 (2-110)	33 (6.8-58.7)	0.494
/mm ³	108 (9-416)	111 (20-416)	85 (9-271)	0.211

^{*}The Mann-Whitney U test was used to compare variables from non-relapsing and relapsing patients, with a level of significance of 0.05. Median values (min-max) are shown.

Supplementary Figure S1

Figure S1. NK-cell receptor and function after imatinib discontinuation. (A-F) NK-cell receptor expression, (G) degranulation capacities, (H) activation marker expression and (I) IFN- γ production at baseline and after imatinib discontinuation in non-relapsing (n=6) and relapsing patients (n=6). Scatter dot plots with median are shown. P values (by Wilcoxon matched-pairs signed ranked test) are shown for each set of data.

Figure S1