Higher HOPX expression is associated with distinct clinical and biological features and predicts poor prognosis in *de novo* acute myeloid leukemia

Chien-Chin Lin,^{1,2,3} Yueh-Chwen Hsu,³ Yi-Hung Li,² Yuan-Yeh Kuo,⁴ Hsin-An Hou,² Keng-Hsueh Lan,⁵ Tsung-Chih Chen,² Yi-Shiuan Tzeng,⁴ Yi-Yi Kuo,² Chein-Jun Kao,² Po-Han Chuang,² Mei-Hsuan Tseng,² Yu-Chiao Chiu,⁶ Wen-Chien Chou^{1,2} and Hwei-Fang Tien²

¹Department of Laboratory Medicine; ²Division of Hematology and Department of Internal Medicine; ³Graduate Institute of Clinical Medicine; ⁴Graduate Institute of Oncology, College of Medicine; ⁵Division of Radiation Oncology and Department of Oncology and ⁶Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan

©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2016.161257

Received: November 30, 2016. Accepted: March 17, 2017. Pre-published: March 24, 2017. Correspondence: wchou@ntu.edu.tw or f99945006@ntu.edu.tw or hftien@ntu.edu.tw

Supplemental methods

Gene signature analysis

GSEA tests whether content genes of a stem cell signature are overrepresented at either side of the global gene list ranked by *HOPX*-associated differential expression. Here we ranked genes based on their *t*-test *P* values between samples with high (top quartile) and low (bottom quartile) *HOPX* expression. The statistical significance of a GSEA enrichment score was tested against 2000-time permutations.

Expression of HOPX isoforms

Total RNA from the 56 prospectively recruited patients was isolated using TRIzol reagent and reverse-transcribed with the Goscript[™] kit (Promega). The primer sequences and their locations for the isoforms of human *HOPX* are shown in Supplementary Table 1 and Supplementary Figure 1.

Bisulfite treatment and methylation analysis of HOPX

The primers for bisulfite PCR cover dense CpG islands. Fifty ng of bisulfite treated DNA, 200 μM dNTP mix, 0.2 U of Hot Start Taq DNA polymerase, 200 nM forward (aggaagaggGTGTGTAGTTTTGTTTGGAGAGGG) and reverse

(cagtaatacgactcactatagggagaaggctATAATTTTAAAAAATCCCCTTAAAAACTTC) primers were mixed together with double-distilled water to a total volume of 5µl. The *in vitro* transcription and base specific cleavage reaction were performed with MassCLEAVE kit (Sequenom, San Diego, CA). The methylation level was analyzed by EpiTYPER software.

Statistical analysis

All statistical analyses were performed using XLSTAT statistical analysis software edition 2015.1 (Addinsoft, Deutschland, Germany). Whole patient population (n = 347) were included for analyses of the correlation between mRNA expression and clinical characteristics, but only those 227 patients who received standard chemotherapy were included in analyses of survivals.

Supplementary Table 1.

Primer sequences of the five human *HOPX* isoforms

	Forward 5' to 3'	Reverse 5' to 3'
NM_032495 (a),	TCGAGTGTGTGCTCATAGGC	TTTGGAAGCTGTGTTTGCTG
NM_139212 (b1), and		
NM_001145460 (c)		
NM_139211 (b2)	TTAGAGCCGGAGCGCGCA	GTGCTTGTCGACCTTGTTGA
NM_001145459 (b3)	CTTCCTTAGAGCCGGAGGTC	GTGCTTGTCGACCTTGTTGA

Supplementary Table 2.

Comparison of clinical manifestations between AML patients receiving standard chemotherapy with higher and lower *HOPX* expression

	Total (n=227)	Higher HOPX	Lower HOPX	
Variables		Expression	Expression	P value
		(n=103)	(n=124)	
Sex ⁺				0.681
Male	118	52	66	
Female	109	51	58	
Age (year) [‡]		47 (15-76)	46 (18-84)	0.716
Lab data [‡]				
WBC (/μL)		24110 (580-341420)	23425 (380-423000)	0.920
Hb (g/dL)		8.3 (3.3-13.0)	7.9 (3.7-16.2)	0.826
Platelet (×1,000 /µL)		65.0 (6-655)	38.5 (2-412)	0.002
Blast (/µL)		12380 (0-260615)	9802 (0-348777)	0.262
LDH (U/L)		849 (202-7734)	1035 (242-13130)	0.014
FAB [*]				<0.001
M0	2	2 (83.3)	0 (16.7)	0.119
M1	55	33 (62.7)	22 (37.3)	0.012
M2	73	28 (44.0)	45 (56.0)	0.144
M3	26	3 (14.3)	23 (85.7)	<0.001
M4	55	31 (56.3)	24 (43.7)	0.060
M5	12	2 (20.0)	10 (80.0)	0.040
M6	4	4 (87.5)	0 (12.5)	0.027

⁺number of patients

[‡]median (range)

*number of patients (% with higher or lower *HOPX* expression in the AML subtype) Abbreviation: LDH, lactate dehydrogenase; CR, complete remission; PR, partial remission

Association of HOPX expression levels with cytogenetic abnormalities				
Variables	Total	Higher HOPX Expression	Lower HOPX Expression	Р
Karyotype†				
Favorable	58	11	47	<0.001
t(8;21)	24	0	24	<0.001
t(15;17)	27	4	23	<0.001
Intermediate	196	102	94	0.532
Normal	166	81	85	0.582
Unfavorable	71	48	23	0.001

Supplementary Table 3.

⁺Favorable, t(15;17), t(8;21), inv (16); unfavorable, -7, del(7q), -5, del(5q), 3q abnormality, complex abnormalities; Intermediate, normal karyotype and other abnormalities.

Supplementary Table 4.

Univariate analysis on overall survival

Variables	Overall Survival		
	Months [#]	Р	
NPM1 ⁺ / FLT3-ITD ⁻		0.197	
Yes (n=29)	NR		
Others (n=198)	48.8 (36.3-61.3)		
CEBPA		0.002	
Double mutation (n=25)	NR		
Others (n=202)	39.2 (28.9-49.5)		
FLT3-ITD		0.001	
Mutated (n=63)	18.0 (12.3-23.7)		
Wild (n=164)	108.1 (82.5-133.7)		
FLT3-TKD		0.828	
Mutated (n=22)	39.2 (12.3-66.1)		
Wild (n=205)	50.0 (38.8-61.2)		
RUNX1		0.040	
Mutated (n=24)	24.9 (17.0-32.7)		
Wild (n=203)	59.3 (37.5-81.0)		
WT1		0.020	
Mutated (n=23)	14.7 (12.4-17.0)		
Wild (n=204)	59.3 (47.8-70.9)		
IDH2		0.430	
Mutated (n=27)	66.0 (41.4-90.6)		
Wild (n=200)	50.0 (37.9-62.1)		
ASXL1		0.815	
Mutated (n=19)	22.0		
Wild (n=208)	54.4 (43.2-65.6)		
DNMT3A		0.313	
Mutated (n=40)	39.2 (22.8-55.6)		
Wild (n=187)	59.3 (46.2-72.4)		
IDH1		0.958	
Mutated (n=13)	57.4 (24.4-90.4)		
Wild (n=214)	50.0 (38.4-61.6)		
TET2		0.093	
Mutated (n=31)	16.0 (9.4-22.6)		
Wild (n=196)	57.4 (48.9-65.9)		

PTPN11		0.898
Mutated (n=12)	NR	
Wild (n=215)	50.0 (38.3-61.7)	
NRAS		0.160
Mutated (n=39)	66.0	
Wild (n=188)	48.8 (37.7-59.9)	
KIT		0.350
Mutated (n=13)	17.4 (10.5-24.3)	
Wild (n=214)	54.4 (42.2-66.4)	
KRAS		0.164
Mutated (n=11)	14.0 (0.1-27.9)	
Wild (n=216)	54.4 (44.9-63.9)	
MLL-PTD		0.001
Mutated (n=9)	10.5 (6.3-14.7)	
Wild (n=217)	57.4 (47.25-67.55)	
TP53		<0.001
Mutated (n=5)	2.5 (1.3-3.7)	
Wild (n=222)	57.4 (47.9-66.9)	
НОХА9		<0.001
Higher expression (n=114)	24.9 (19.3-30.5)	
Lower expression (n=113)	116.8	
НОРХ		<0.001
Higher expression (n=103)	23.7 (18.2-29.2)	
Lower expression (n=124)	116.8	

Abbreviation: NR, not reached

[#]Months: median±S.D.

Supplementary Table 5.

Common leading-edge genes of the HSC and LSC signature among NTUH, TCGA, GSE12417 datasets

HSC signature	LSC signature
ABCB1	ATP1B1
BAALC	C2CD2
BCL11A	FLJ13197
C50RF23	IQGAP2
CRIM1	TGIF2
DAPK1	
GUCY1A3	
HTR1F	
INPP4B	
KIAA0125	
MLLT3	
MYO5C	
PLSCR4	
PROM1	
SOCS2	
SPINK2	
TFPI	

Supplementary Table 6.

Association between the expression levels of *HOPX* and the ABC genes related to chemoresistance

	Probe	Higher HOPX	Lower HOPX	P value
ABCB1	4210039	5.879	5.455	< 0.001
ABCB1	1230048	6.557	5.946	< 0.001
ABCG1	6060377	7.611	6.880	< 0.001
ABCG1	5860377	6.626	6.017	< 0.001
ABCG1	6450059	5.931	5.864	< 0.001
ABCG2	7160220	5.330	5.274	0.001

Supplementary Figure 1

Five isoforms of HOPX: HOPXa (NM_032495), HOPXb1 (NM_139212), HOPXb2

(NM_139211), HOPXb3 (NM_001145459), HOPXC (NM_001145460) and the primer

locations. The isoforms of a, b1, and c have low levels of expression and are

summed up together by one pair of primers.

Supplementary Figure 2

Comparison of overall survival between patients with higher and lower *HOPX* levels in non-APL patients (A) and patients with normal karyotype (B) in the TCGA cohort. Green line: higher *HOPX* expression group; Blue line: lower *HOPX* expression group.

1 1 0.9 0.9 TCGA TCGA 0.8 0.8 Non-APL normal karyotype 0.7 0.7 Median 12.2 vs. 19.2 Median 11.2 vs. 17.3 0.6 0.6 0.5 0.5 P = 0.003P = 0.0160.4 0.4 N = 85 0.3 0.3 N = 55 0.2 0.2 0.1 N = 89 0.1 N = 42 ∞ 0 0 0 20 40 60 80 100 0 20 40 60 80 100 OS (months) OS (months)

HOPX b2 promoter CpG island methylation status in the U937 leukemia cell line and 62 AML patients. The red circles are not methylated while the yellow circles in U937 cells mean heavy methylation. The coordinate for the transcription start site is 0 (NM_139211).

GSEA plots of HSC and LSC gene signatures in (A, B, C) TCGA and (D, E, F) GSE12417

datasets.

Supplementary Figure 5

Comparison between expression patterns of *HOPX* and *HOX* family genes in normal/AML samples. (A) Heatmap of *HOPX*, *HOX* family genes, and ABC transporter genes in GSE24006. The dataset is composed of expression profiles of cells sorted from normal BM and umbilical cord blood (n=31) and from AML BM and peripheral blood (n=23), separated by a yellow line. The data obtained from probes representing the same gene are averaged; genes were presented with averagelinkage hierarchical clustering. Samples are clustered in normal and AML groups, respectively. In normal samples, *HOPX* expression is generally concordant with *HOX* family genes (mean correlation coefficient, 0.37). In contrast, in the AML patients, *HOPX* expression is generally discordant with *HOX* family genes (mean correlation coefficient, -0.31). (B) Heatmap of *HOPX*, other HOX genes, and ABC genes in GSE12662. The dataset is composed of CD34+ cells (CD34; n=5), promyelocytes (PRO; n=5), and neutrophils/polymorphonuclear leukocytes (PMN; n=5) fractionate from normal bone marrow, and 76 bone marrow samples of AML. The data from probes representing the same gene are averaged; genes are presented with average-linkage hierarchical clustering.

Heatmap of GSE24759, which contains 9 distinct hematopoietic cell populations. The dataset profiles cells purified from 211 normal umbilical cord blood and peripheral blood samples: Hematopoietic stem cells (HSC; n=27), erythroid cells (ERY; n=33), megakaryocytes (MEGA; n=12), granulocyte/monocyte progenitors (GMP; n=37), dendritic cells (DC; n=10), B cells (B; n=29), natural killer cells (NK; n=14), natural killer T cells (NKT; n=4), and T cells (T; n=45). All *HOPX* and *HOX* family genes are highly expressed in HSC (average *z*-values = 0.82 and 0.75; both *P*-values < 0.001, one-sample *t*-test against zero).

Comparison of global methylation patterns between *HOPX* and *HOX* family genes. (A) Heatmap of the 194-sample TCGA methylation dataset. We represent methylation levels by *M*-values, with positive and negative values indicating high and low levels of methylation, respectively. Hierarchical clustering reveals three clusters of genes, among which *HOXA3*, *HOXA4*, *HOXA5*, and *HOXB3* are highly methylated, while methylation levels of *HOXA7*, *HOXA9*, and *HOXB4* are low. (B) Distribution curves of methylation *M*-values of genes representing the three clusters. There are distinct patterns of methylation among the homeobox genes.

