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T
he aim of this review is to define the role
of peripheral blood stem cell transplan-
tation for the treatment of multiple

myeloma. Therefore, we first review our present
knowledge of this disease and then analyze the
clinical trials based on the use of autologous
bone marrow or peripheral stem cell transplan-
tation. Optimal methods for peripheral blood
stem cell transplantation will also be discussed.

Myelomagenesis
Multiple myeloma (MM), the prototype plas-

ma cell malignancy, is characterized by the
uncontrolled accumulation of plasma cells that
replace normal bone marrow (BM) and by the
overproduction of monoclonal immunoglobu-
lins (Ig) and cytokines. A number of observa-
tions provided both by basic sciences and by
clinical investigation allow us to place the dis-
ease and its unusual features in a more coherent
perspective and to discuss new therapeutic
options properly.

Epidemiology
The reported incidence of MM is available for

the years up to 1982 and varies substantially in
different countries.1 A striking increase in the
incidence of MM has been noticed in the last
thirty years and is only partially2 explained by
amelioration of diagnostic capabilities.3 Between
1973 and 1990 an increase of 40% among peo-
ple over 65 and of almost 15% among people
under 65 has been recorded in US Cancer Death

rates.4 Ethnic differences are apparent: the inci-
dence is twice as high and the mortality rate has
quadrupled in blacks, while doubling in whites.4

By contrast, rates among Asians are lower than
those of whites living in the same geographic
area.5

Both genetic and environmental factors can be
invoked to explain these ethnic differences. A
significant increase has been detected in first-
degree relatives of patients.5 Moreover, an
increased risk has been observed to be associat-
ed with occupational and environmental ele-
ments that include farming exposure to pesti-
cides, exposure to ionizing radiations, petrole-
um and rubber processing, as well as persistent
(viral) infections.3 The main conclusion that can
be drawn from a large body of observations is
the necessity of discriminating the genetic roots
from the environmental links of the disease. As
a corollary, it may be asked which elements
(genetic vs. environmental) are associated with
the development of monoclonal gammopathy of
undetermined significance (MGUS) and how
they relate to the progression of MGUS to overt
MM. 

Cytogenetics and molecular biology
Two major pieces of information have

emerged from cytogenetic studies. The first is
that no consistent (yet not random) chromo-
some abnormalities have been detected in MM.6

The second is that numeric chromosome abnor-
malities are shared by MGUS and MM.7,8 Both
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facts lead us to ask what the prerequisite is and
what the additional events are in the develop-
ment of plasma cell malignancies. We still do
not know the prerequisite events that lead to
MGUS, to MM or to the evolution of MGUS
into MM, or how they differ from collateral ele-
ments that simply favor the malignant process.
Along the same vein, it is interesting that no
known specific oncogene has yet been related to
the development of MM or to the transition
from MGUS to overt MM. The genes most
commonly implicated in MM, like N-RAS, P53
and retinoblastoma gene (RB), are all involved
in the late stages of the disease.9

If the same cytogenetic abnormalities are
shared by two clinical situations as different as
MGUS and overt MM, a patrolling role for the
immune system can be envisaged in the natural
history of plasma cell disorders. It is not unrea-
sonable to suspect that if the immune system is
able to keep a malignant clone under control, a
benign MGUS is the resulting disease; the
breakdown of this control would lead to MM.
Little direct, but much indirect evidence is avail-
able in murine models to suggest the immuno-
modulation of myeloma cell growth by host
effector cells.10

Immunochemistry and B cell differentiation studies
Three major findings have been obtained

through immunochemistry and by a more prop-
er understanding of the differentiation processes
of B lineage cells. First, MM paraproteins may be
directed against a wide variety of infectious
agents, suggesting that MM development and
antigen (Ag) stimulation may be causally
related.11-13 Second, the Ig isotype of MM plasma
cells is generally IgG or IgA, demonstrating that
the predominant phenotype of MM tumor cells
is post-switch.9 Third, clonal proliferation
involves a cell population that has already passed
through the stage of Ig genes somatic hypermu-
tation.14,15 Since this process occurs in the germi-
nal centers (GC) of secondary follicles,16 its pres-
ence is a clear marker of the differentiative and
functional level reached by the cell population
being analyzed. 

By and large, the observation that MM is a
neoplasm of plasma cells that have a post-switch

phenotype, show somatic mutations and may
produce monoclonal Ig with targeted antibody
(Ab) activity leads to the conclusion that MM is
an Ag-driven process, even if the specific causal
Ag is generally unknown. This assumption has
to be confronted with the simple, though basic,
lesson from clinical medicine that MM is a BM
disorder. In contrast with the distribution of
normal plasma cells, MM plasma cells localize
uniquely within the BM.9 Although the lamina
propria of the intestine contains more Ig-pro-
ducing cells than all other tissues in the body, it
is never a site where MM develops, not even
IgA1- and IgA2-producing MM.17 Likewise,
involvement of the spleen and/or lymph nodes,
though typical of Waldenström’s macroglobu-
linemia, is very unusual in MM.17 The exclusive
BM localization of MM plasma cells appears to
conflict with the extensive somatic hypermuta-
tions of the Ig they produce, which indicate a
peripheral origin of malignant cells. However,
while the steps of Ag processing and presenta-
tion that lead to the generation of somatically
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Figure 1. Plasma cell precursors generated in peripheral lymphoid organs
differentiate in contact with bone marrow stromal cells.
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mutated IgG and IgA plasma cells occur only in
secondary lymphoid follicles, the BM is a major
site of IgG and IgA production in T-cell-depen-
dent secondary immune responses.18-20 Plasma
cell precursors with specific traffic commit-
ments originate from secondary lymphoid
organs and migrate to the BM a few days after
the Ag challenge (Figure 1).20,21

The issue whether MM plasma cell precursors
are early BM stem cells or late peripheral B cells
is misleading. The cell whose original transfor-
mation has ultimately generated the malignant
plasma cell progeny that we see in MM cannot
be equated with the B cell population that dis-
seminates the disease throughout the axial skele-
ton.21 The identity of the hypothetical MM stem
cell is unknown, i.e. we do not know either the
cellular target of the primary transforming
event or where, when and how the unknown
cellular target was hit by the transforming event.
By contrast, the information available on the B
cell population that feeds the downstream com-
partment of plasma cells and disseminates the
disease indicates that this population has been
generated in peripheral lymphoid organs during
secondary T-cell-dependent Ab response, is pro-
grammed to home to the BM, and is committed
to differentiate in close association with the BM
microenvironment (Figure 2).21,22 On the basis of
existing data, the most likely candidate for the
physiological B lymphocyte equivalent of the
MM plasma cell precursor is either a B memory
cell or a plasma blast (Figure 1).14,15,23,24

Microenvironment and cytokines 
It is assumed that BM-seeking plasma cell pre-

cursors receive a differentiation signal after con-
tact with the BM stromal microenvironment
(Figure 2).25,26 Microenvironmental stromal cells
play an essential role in the growth of plasma
cell tumors both in mice27 and in humans.28 MM
BM stromal cells are well equipped with a large
series of adhesion and extracellular matrix mol-
ecules that mediate homotypic and heterotypic
interactions and provide anchorage sites to cells
selectively exposed to locally released growth
factors.22,29,30 MM BM stromal cells produce
cytokines like IL-6 known to play a crucial role
in the evolution of the disease both in experi-

mental systems, including IL-6 transgenic mice,
and in vivo.31-34 High levels of IL-6 are observed
in the sera of patients with aggressive or pro-
gressive MM,35 and infusion of anti-IL-6 anti-
bodies in patients with plasma cell leukemia or
MM refractory to therapy has decreased the size
of the plasma cell pool and hampered the prolif-
erative activity of plasma cells.36

Malignant MM plasma cells are not inert vehi-
cles of monoclonal Ig. They also produce a
number of cytokines, including interleukin (IL)-
1b, tumor necrosis factor (TNF)-b and mono-
cyte-macrophage colony stimulating factor (M-
CSF), that activate stromal and accessory cells,
aa well as having significant osteoclast activating
factor (OAF) activity.22,37 A minority of human
MM cell lines autonomously produce small
amounts of IL-6, but it is unclear whether fresh
MM plasma cells can also produce IL-6.34 IL-6,
besides promoting B cell proliferation and dif-
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Figure 2. Model of multiple myeloma growth and progression based upon a
series of mutual interactions between the B-cell clone and the bone mar-
row microenvironment.



ferentiation, has recently been shown to have
important OAF activity.32,33

These experimental findings linked to clinical
observations lead to the attractive hypothesis
(Figure 2) that a self-maintaining series of mutu-
al interactions between the malignant B cell
clone and the BM microenvironment may
explain the progression of MM22 through the
production of ever-increasing amounts of
cytokines capable of recruiting and activating
several microenvironmental cells, including
osteoclasts. 

The role of autologous transplantation in the
treatment of multiple myeloma

Investigations into the use of myeloablative
therapy for the management of MM were pio-
nereed in the mid-1980s and were stimulated by
a persistent lack of progress in prognosis with
conventional chemotherapy.38,39 As is the case
with any experimental approach, initial trials
were restricted to the treatment of patients with
advanced refractory or relapsing disease and
were focused mainly on defining the feasibility
and toxicity of the procedure. These preliminary
experiences were performed without the support
of hemopoietic stem cells and demonstrated that
high-dose melphalan (HDM), given intra-
venously (i.v.) at doses ranging between 100 and
140 mg/m2, yielded an increase in the complete
remission (CR) rate, albeit at the expense of pro-
longed marrow aplasia and an unacceptably high
early mortality rate.40-42 On the basis of these
observations later studies with chemotherapeu-
tic agents administered at myeloablative doses,
and possibly added total body irradiation (TBI),
were carried out with the support of autologous
BM and/or peripheral blood hemopoietic stem
cells (PBSC).43 Demonstration of the safety and
relative efficacy of autotransplants in refractory
MM41,44-46 encouraged subsequent application of
this procedure in earlier phases of the disease45,46

and, more recently, in newly diagnosed patients
as well.47,48 Over the past decade interest in this
new treatment strategy has progressively grown,
and the number of reported patients receiving
autologous hemopoietic stem cell-supported
myeloablative therapy is now approximately one

thousand worldwide. 
What lessons have we learned from this collec-

tive experience? It is difficult to draw firm con-
clusions from published trials since none of
them were controlled and patient populations
were different, as were the preparative treat-
ments and the criteria used for evaluating tumor
response. In addition, the bias introduced by
patient selection and, in most of the cases, the
lack of an adequate follow-up also helped com-
plicate correct interpretation of the data. As a
consequence, the exact role of autotransplanta-
tion in the management of MM still remains
poorly defined and could be properly addressed
only in controlled clinical studies comparing
autografting and conventional chemotherapy.
There are at least several such trials in progress at
the moment in Europe and the United States.
Data reported at the last ASH meeting in Seattle
(1995) by the Intergroupe Français du Myelome
are promising and suggest an advantage for
autografted patients in terms of increased CR
rate and extended survival duration.49

Obviously, these results warrant confirmation
in larger independent series. For this reason,
similar investigations are currently being con-
ducted in the United States under the auspices
of the National Cancer Institute. While the con-
clusions of these studies are being awaited,
analyses of available transplant data have pro-
vided the following important information.

Transplant-related mortality
Transplantation of autologous hemopoietic

stem cells following myeloablative therapy has
greatly improved the tolerance to this modality
of treatment and reduced the frequency of pro-
cedure-related mortality to less than 5-10%50-52

(Tables 1, 2). More recently, with the combined
support of BM and PBSC followed by post-
transplant administration of hemopoietic
growth factors, early mortality was further
decreased to approximately 1-2%.53

Tumor response and overall survival
Increased tumor response, as recognized by an

increase in the CR rate, has been reported by
many groups following myeloablative treatments
(Table 1).45-48,54,55 Basically, criteria for CR includ-

359PBSC transplantation in multiple myeloma



360 F. Caligaris Cappio et al.

ed both the disappearance of monoclonal plas-
ma cells in the bone marrow, as evaluated on
cytological smear examination or on flow cyto-
metric analysis of DNA and cytoplasmic immu-
noglobulins, and no detectable M component by
routine electrophoresis (later immunofixation
was added). As would be logically expected, the
CR rate varied in different studies, with a range
between 20% and 80%, mainly depending on
the use of more or less stringent definition crite-
ria and the status of the disease at transplant
(Tables 1 and 2). Moreover, the length of sur-
vival was generally extended after autotrans-
plant, up to a median of approximately 3 to 5
years (Tables 1 and 2).48,50-52

Choice of myeloablative therapy
Historically, the autotransplant experience in

MM can be divided into two groups of studies:
the ones using and those not using TBI as part of
the conditioning regimen. With few exceptions,55

HDM, administered at doses ranging between
140 and 200 mg/m2 has been the mainstay of
both chemo-radiotherapy45,47,49,50,52,56 and radia-

tion-free regimens48,53,54,57 for the following rea-
sons: it shows a close dose relationship, is not
cross-resistant with other alkylating agents and
compared to cyclophosphamide, seems to offer a
better chance of overcoming chemotherapy
resistance.58 In the absence of controlled clinical
studies comparing different preparative treat-
ments in specific subgroups of patients, it is hard
to draw any meaningful conclusion concerning
the best conditioning treatment. The impression
from the data available in the literature is that no
particular regimen demonstrated clear-cut supe-
riority over the others. Therefore the choice of
treatment to be used as preparation for auto-
transplant should ultimately take into account
the ability to perform TBI, patient eligibility for
TBI (those previously irradiated on the spine
cannot, in fact, be candidates for radiation), and
the expected toxicity. HDM at 200 mg/m2 proba-
bly has less acute extrahematological toxicity
than regimens including TBI, a finding that
formed the basis for exploring repeated adminis-
trations of this drug with tandem (or double)
autotransplant programs.53,59

Group No. % Source % % Median mos.
pts. sens. % BM % PB ED CR PFS Surv.

EBMT 130 68 63 25 6 48 17 27

Univ. Arkansas (USA) 287 60 unknown <5 27 (IF) 22 35

French Registry 133 77 61 38 4 37 33 46

Abbreviations: EBMT, European Group for Blood and Marrow Transplantation; Sens., responsive to conventional chemotherapy;
BM, bone marrow; PB, peripheral blood; ED, early death; CR, complete remission; IF, immunofixation analysis; PFS, progression-
free survival.

Table 1. Results of autotransplants for
multiple myeloma.

Author No. Median mos BM/PB TBI % % IFN-a Median mos.
pts. to transpl. ED CR PFS Surv.

Jagannath 14 <12 +/- + 0 36 (IF) – 16 33+ (86%)

Attal 35 9 +/- + 3 43 + 33+ (53%) 41+ (81%)

Cunningham 53 <12 +/- – 2 75 – 23 54+ (63%)

Harosseau 103 7.5 +/+ + 4 33 ± 37 54

Barlogie 89 <12 +/+ +/- 0 46 (IF) + 37 71+

Abbreviations: BM, bone marrow; PB, peripheral blood; ED, early death; CR, complete remission; IF, immunofixation analysis;
IFN-a, interferon-a; PFS, progression-free survival.

Table 2. Results of autotransplants for
recently diagnosed MM patients with
chemosensitive disease.
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Remission duration
As previously emphasized, myeloablative ther-

apy requiring autologous hemopoietic stem cell
support provides substantial antitumor
response, especially in patients with good prog-
nosis (see below). However, even in this favor-
able condition, a considerable relapse rate,
approaching 60% at 3 years, is reported after
autotransplant and no plateau is yet apparent on
relapse-free survival curves.50-52 These results
contrast with the 30% probability of long-term
unmaintained remissions (and possible cures)
reported by several groups for patients receiving
allogeneic transplantation.60 It has been suggest-
ed that the lack of an immunological effect by
the donor’s marrow T lymphocytes on the resid-
ual myeloma cells (i.e. graft-versus myeloma)61,62

and/or possible tumor reseeding may account
for the apparently less durable duration of dis-
ease control following autologous as opposed to
allogeneic transplantation. For this reason,
important issues currently under clinical investi-
gation in the autografting setting include further
increases in the cytotoxic dose intensity level and
depletion of tumor cells from the graft (see
below).

Prognostic variables
Several important variables affecting the out-

come of autologous transplantation have been
identified (Table 3), including b2-microglobulin
(b2-M) levels,45,47,50-52,56 pre-transplant disease sta-
tus,45,51,52 age,45,51,52 performance status,45 Ig iso-
type45,51,52 and response to myeloablative therapy
(e.g. attainment or non-attainment of CR).47,48 In
particular, at multivariate regression analysis
early mortality was reported to be highest among
resistant relapsing patients, who also had the
poorest response to myeloablative therapy and
the shortest relapse-free survival duration.45 In
contrast, low serum b2-M levels, both at diagno-
sis and before autografting, and prior responsive-
ness to conventional chemotherapy conferred the
highest CR rate, as well as prolonged relapse-free
and overall survival durations.45,47,50-52,56 In addi-
tion, the timing of autotransplant also emerged
as an important and independent prognostic
parameter.56,64 This observation, on the one hand,
was related to the generally reported improved

outcome of patients transplanted earlier and, on
the other hand, reflected the acquisition of multi-
ple biological abnormalities in advanced phases
of the disease63 that ultimately led to refractori-
ness even to high-dose therapy.64 Conversely,
retaining sensitivity to high-dose therapy in earli-
er phases of MM assured better results, even in
patients with primary refractory disease.45,47,65

New perspectives under clinical investigation
Based on the assumption that the failure of

the conditioning regimen to eradicate the
myeloma clone contributes most to post-trans-
plant relapse, attempts to increase the intensity,
and possibly the efficacy, of treatment by means
of repeated courses of myeloablative therapy
have recently been undertaken.46,53 The more
rapid recovery of hemopoiesis assured by the
combined use of PBSC and post-transplant
administration of hemopoietic growth factors59

made the double transplant strategy feasible for
approximately 60% of patients within one
year.53 Results of pilot trials in primary refracto-
ry MM indicated that such an approach provid-
ed superior antitumor effect with improved
event-free and overall survival durations with
respect to a single transplant.53

A controlled clinical study comparing in a
randomized fashion single vs. double autograft-
ing in newly diagnosed patients is currently

PBSC transplantation in multiple myeloma

Table 3. Variables affecting the outcome of autotransplants for multiple
myeloma.@

D i s e a s e  s t a t u s

Variable Refractory Refractory + Responsive

CR RFS Surv. CR RFS Surv.

Low b2M – +* +* + +* +*

Early transplant + + + + +* +*

CR achievement +* +*

Double transplant +* +*

CT responsiveness + + +

Younger age – + + + + +

Non IgA isotype – + + – + +

*in multivariate analyses.
Abbreviations:  CT, conventional chemotherapy; RFS, relapse-free survival.
@Ref.: 45,47,48,50,51,52,56,63,64,65.



underway in France. A similar trial is already in
the early accrual stage in Italy. These studies
will clarify in the next several years whether
double transplant is associated with better
prognosis. Alternatively, efforts to improve the
clinical impact of autotransplant have been car-
ried out by several groups and have included
depletion of tumor cells from autografts by
both negative selection of myeloma cells and
positive selection of CD34+ hemopoietic stem
cells,66,67 as well as post-transplant immunomo-
dulation with interferon-a (IFN-a).47,49,68

In summary, hemopoietic stem cell-supported
myeloablative therapy holds the promise of
being a safe and effective treatment modality for
MM. It yields better overall response and CR
rates than conventional chemotherapy and may
prolong the duration of survival.49

These conclusions, while encouraging, have
been drawn mainly from uncontrolled studies
carried out in select groups of patients and
obviously warrant confirmation in controlled
clinical trials which are currently under way.
Therefore the next several years will clarify
whether newly diagnosed patients with sympto-
matic MM can be routinely offered a single or
double autotransplant as first-line or early sal-
vage therapy for their disease. 

While the results of these studies are being
awaited, wider application of myeloablative
therapy should probably be encouraged. Less
heavily pretreated patients who did not respond
to prior conventional chemotherapy are more
likely to benefit primarily from autotransplant.
In addition, data available from the literature do
suggest that a superior outcome of this proce-
dure can be anticipated in patients with chemo-
sensitive disease and low tumor burden at diag-
nosis. Hence, ongoing clinical trials aimed at
comparing conventional versus myeloablative
therapy will also address the important issue of
the role of autotransplant as early consolidation
therapy in patients with intrinsically good prog-
nosis. However, even in this favorable situation,
recurrence of the underlying malignant disease
remains a major problem and is the most com-
mon cause of treatment failure. For this reason,
attempts to improve the clinical impact of auto-
grafting are under active clinical investigation. 

In addition, many other problems regarding
autologous transplantation for MM are still
unresolved and should be formally addressed in
future clinical trials. The most important of
these issues include the choice of the best condi-
tioning regimen, the optimal source of hemo-
poietic stem cells, the nature of relapse after
autografting, the benefit from purging tech-
niques and, finally, the likelihood of long-term
disease control, especially for patients with mol-
ecularly defined CR.69

Advantages offered by the use of PBSCs in the
treatment of multiple myeloma

The use of PBSC in support of high-dose
chemoradiotherapy (peripheral blood stem cell
transplantation) (PBSCT) is a valid alternative
to autologous bone marrow transplantation
(ABMT) in the treatment of both hematologic
and non-hematologic neoplastic disorders.70-72

The growing interest in this procedure can be
explained by: i) the possibility of mobilizing and
collecting large amounts of hemopoietic pro-
genitors,73,74 and ii) the rapid hemopoietic recov-
ery observed following PBSCT.70,71,74-78

Progenitor collection represents the critical
step in the procedure. Daily monitoring of circu-
lating CD34+ cells is an essential assay in predict-
ing the number and timing of leukaphereses.79,80

Under proper conditions, only a few leukaphere-
sis procedures are required to collect enough
progenitor cells for marrow reconstitution after
myeloablative treatments. Indeed, when circulat-
ing CD34+ cells rise to >50/µL, 1-2 leukaphereses
may yield more than 503104/CFU-GM/kg or
83106/CD34+ cells/kg, which are considered the
ideal values for optimal engraftment.80-82 In addi-
tion, it has been shown that large quantities of
very immature elements, identified as long-term
culture-initiating cells (LTC-IC), are mobilized
as well.83-85

Inclusion in the harvested material of very
immature elements is responsible for the stable
and durable marrow reconstitution observed in
patients autografted with circulating progeni-
tors.77,83 Thus the term PBSC, now commonly
employed to identify mobilized hemopoietic
progenitors, relies on both biological and clinical
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observations. As previously emphasized, the
rapidity of engraftment is the major advantage
offered by PBSC. Nevertheless, some authors
argued that BM cells stimulated by growth fac-
tor administration might be at least as efficient
as mobilized progenitors in ensuring rapid
engraftment following myeloablative
treatment.87-89 However, it has recently been
shown that both committed and early progeni-
tors are by far more frequent in PB than in BM
during maximal mobilization.90 This conclusive
observation points toward the preferential use
of PBSC as the hemopoietic cell source for
grafting purposes.

Since its introduction into clinical practice,
PBSCT has been considered a promising
approach for MM patients.91,92 Several studies
have been designed in the last few years. 

Reported results have shown a significant
decrease in hemopoietic toxicity following this
procedure as compared to ABMT, with recovery
of granulocytes > 0.53109/L and plateles > 25-
303109/L within approximately 2 weeks after
autograft (Table 4)42,44-48,52,54,56,93-98 This was paral-
leled by rather good tolerability with rare early
fatal events.52,56,97,98

In addition, hemopoietic reconstitution by
PBSC seems to be long lasting. MM patients
may require repeated exposure to high-dose
cytotoxic therapy. Reducing hemopoietic toxici-
ty might be critical for the ultimate treatment
outcome. Therefore, also for its long-term
effect, PBSCT may have a positive impact on the
life expectancy of those patients who are suit-
able for intensified chemo-radiotherapy treat-
ments.99

PBSC mobilization and collection in multiple
myeloma

PBSC mobilization in myeloma patients 
PBSC collection presents specific problems in

patients with MM, where a decrease of progeni-
tors in the bone marrow is due in part to a defect
of the monocyte/macrophage activation path-
way. In fact, CD34+ cells from MM patients grow
normal numbers of colonies when stimulated by
normal monocytes, while normal CD34+ cells
have a reduced growth rate with MM mono-
cytes.100 Another aspect is prior treatment.
Repeated courses of chemo-radiotherapy are
able to exhaust the pool of pluripotent stem
cells,101 resulting in insufficient progenitor cell
harvests.59,102-105 Studies specifically addressed at
MM patients show that melphalan106 and treat-
ment-free interval prior to PBSC mobilization107

also have an influence on the release of progeni-
tors into the peripheral blood, while the value of
BM plasmacytosis as an independent factor is
more questionable.108,109 As a consequence of
these and other unknown factors, progenitor
yields in MM are often unpredictable and lower
than those observed in other malignant disor-
ders.110 Nonetheless, cell harvests sufficient for
one or two subsequent autografts are usually
obtained,5 9 , 9 7 , 1 0 8 , 1 1 1 - 1 1 3 even in patients with
markedly infiltrated marrow or primary resis-
tant disease.109 To avoid the adverse influence of
pre-mobilization treatment, PBSC collection in
MM patients should be planned as early as pos-
sible in the course of disease, and alkylating
drugs should be omitted in the primary treat-
ment. It should also be kept in mind that heavily

T ime  to  recove r y  f rom°
Intensified treatments* leukopenia thrombocytopenia Treatment-related References

(days) (days) deaths (%)

Without autograft 28# 27 17 42,46,54,93-95

With BMT 20 26 7 44,45,47,48,96

With PBSCT 14 18 3.7 52,56,97,98

*intensified treatments consisted of HDM (60-200 mg/sqm) in most studies; the association of TBI/HDM was also used in some pro-
grams with autograft; °time to recovery from leukopenia and thrombocytopenia was reported as days to reach >0.5x109 ANC/µL and
> 25x109 platelets/L, respectively, in nearly all studies; #table data have been calculated as medians from median values of hemo-
poietic recovery and from percentages of treatment-related deaths reported in each quoted study.

Table 4. Toxicity of intensified treat-
ments with or without autologous stem
cell support in multiple myeloma
patients.

PBSC transplantation in multiple myeloma
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pre-treated patients require more leukaphereses
and show slower platelet recovery after auto-
graft.109 The key issues in the apheretic harvest of
PBSCs in MM are presented in Table 5.

PBSC also may be collected from patients with
malignancies in steady state conditions;114 how-
ever, multiple aphereses are required with this
method. Mobilization of progenitors with cyto-
toxic chemotherapy, hemopoietic growth fac-
tors, or a combination of the two is therefore
generally preferred. The hematopoietic recovery
that occurs after cytotoxic chemotherapy is
accompanied by a PBSC rise that is proportional
to the intensity of myelosuppression.102, 108

In MM, chemotherapy alone with either
HDM,115 or CHOP-like regimens112,113,116 or inter-
mediate- to high-dose cyclophosphamide
(Cy)97,117,118 has been used to mobilize PBSC.
However, the failure rate, defined as the percent-
age of patients with a low progenitor cell peak in
the blood or poor collections at the end of the
apheresis program, was relatively high, ranging
from 20 to 30%. Moreover, when using high-
dose therapy protocols without growth factor
support, one should consider that this implies
an undue risk of severe toxicity.118

G-CSF73,119-121 and GM-CSF,75,112 as well as other
cytokines are able to promote a dramatic rise of
progenitors in the circulation. In a study of MM
patients, administration of G-CSF at 10 µg/kg
alone for six days induced a considerable increase
in CFU-GM and CD34+ cells,111 with rapid recov-
ery of counts after autograft. However, the use of
growth factors alone in patients with neoplastic
disorders produces little enthusiasm among

hematologists. In fact, the spike of progenitor
cells can be further amplified by combining
growth factors with chemotherapy.71 Together
with the demonstration that tumor cells are also
mobilized by growth factors,123 this fact makes
the combination of chemotherapy with G-CSF
or GM-CSF the most reliable approach.86,109,112,113 

In MM as in other diseases,74,77 the use of
growth factors following cytotoxic treatment
proves to be superior to chemotherapy alone in
terms of progenitor cell yield,108,112 and signifi-
cantly contributes to minimizing treatment tox-
icity.112,124 High progenitor peak levels are report-
ed108 with high-dose chemotherapy, namely Cy
at 7 g/m2 or etoposide (VP16) at 2 g/m2 followed
by G-CSF or GM-CSF, and results seem to com-
pare favorably with intermediate-dose Cy with
or without G-CSF or GM-CSF. In conclusion,
the optimal schedule for PBSC mobilization in
MM has not yet been defined, though the most
experience is with Cy at 7 g/m2 followed by G-
CSF or GM-CSF. A review of the mobilization
schedules reported so far in MM patients is pre-
sented in Table 6.

Target of collections and cell monitoring
CD34+ cell number and CFU-GM dose are

both reliable predictors of engraftment time.125-129

The amount of PBSC necessary for engraftment
is not clearly defined, but values of 10 to
203104/kg CFU-GM represent a reasonable
minimal dose.110,120 Irrespective of disease, rapid
neutrophil engraftment has been reported with
203104/kg CFU-GM or 23106/kg CD34+

cells.125,130,131 However, a higher dose may be nec-
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Issue Related aspects

Dysregulated or suppressed hematopoiesis Decreased rate of progenitors,* defective monocyte activa-
tion,* prior chemotherapy

Methods for mobilization Type  (and doses) of chemotherapy, use of growth factors

Toxicity of mobilization therapy Fever, allergy, infections, thrombosis

Kinetics of recovery after mobilization Timed and asynchronous use of WBC, monocytes and

platelets

Prediction of harvest Prior chemotherapy, G-CSF test

Progenitor cell assays CD34+ cells, CFU-C

Target of collections Need for >53106/kg CD34+ cells in heavily pre-treated

patients*

Apheresis method Cell separator, volume processed, schedule of aphereses

Tumor contamination of harvest Purging technique

Table 5. Key issues in mobilization
and collection of PBSCs.
Note. Most aspects are shared with
other malignant disorders, and only
a few may specifically affect multi-
ple myeloma. These latter are
marked with an *.
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essary for rapid and full platelet engraft-
ment.105,132 In a recent study of MM autografts,
Tricot et al.59 found that platelet engraftment is
influenced by previous history and cell dose. In
patients with more than 24 months of chemo-
therapy before the autograft, they found a dose
≥53106/kg to be required for rapid and full
platelet recovery post graft. This number of
CD34+ cells may be obtained with 1 or 2
apheretic runs, and only a minority of patients,
namely those with prolonged pre-mobilization
treatment, need a higher number of apheretic
procedures. The number of cells needed is obvi-
ously greater when a double autograft is
planned. When this is the case, since recovery
after a second autograft is influenced by the
same factors as the first,59 the number of CD34+

cells to be collected simply has to be doubled.
CD34+ cell monitoring in blood and collection

products is undoubtely the most reliable and
rapid method for apheresis planning,131,133-135

though the assay requires skillful personnel and
carries a substantial cost. The issue has been
reviewed extensively by Rowley.136 Siena et al.133

initially suggested starting the collection pro-
gram as soon as CD34+ cells were detectable in
the peripheral blood. However, in terms of effi-
ciency, the best collections are performed when
CD34+ cells are at their peak. In practice,
aphereses should be started as soon as the
CD34+ cells in the blood exceed a given level. We
suggest a value of 20 CD34+ cells/µL combined

with a WBC level >1.03109/L and a platelet
count >303109/L before starting collections.82,133

Mononuclear cells (MNC) in DNA synthesis
also predict a good yield when their level in the
blood is >5% (or >250/µL).137

Few studies report detailed data on apheretic
PBSC collection in MM. Dimopoulos et al.109

began the aphereses when the MNC count went
above 0.33109/L, having as target the collection
of > 23106/kg CD34+ cells. They were able to
collect >3.03106/kg CD34+ cells daily in patients
with ≤ 4 months of prior chemotherapy, but the
mean daily yield was uniformly lower (< 13106

CD34+ cells/kg) in patients with more than 12
months of chemo-radiotherapy. Tricot et al.59

initiated collections upon recovery of a WBC
count > 0.53109/L, and assumed a target of
> 63,108/kg MNC to support two autografts. In
a recent study113 aphereses were started as soon
as the WBC count exceeded 53109/L after a
CHOP-like regimen followed by G-CSF, and
> 63106/kg CD34+ cells were collected from all
patients in 1 to 3 aphereses. 

A predictive test with G-CSF, a single dose of
10 mcg/kg, followed by CD34+ cell monitoring
on days 4 and 5 has been proposed.138 The study
included patients with MM, but the sample was
too small to draw any conclusions. Steady-state
CD34+ cell counts seem to predict the yield of
PBSCs after mobilization with chemotherapy
and G-CSF,139 but not after G-CSF alone.140 Table
7 shows the first apheresis day reported with dif-

PBSC transplantation in multiple myeloma

Authors No. pts Treatment Growth factor Day of Peaked Peaked Notes
progenitor peak CD34+/µL CFU-GM/mL

Reiffers117 15 Cy 7 g/m2 no nr nr nr 5/13 failures

Jagannath97 36 Cy 6 g/m2 no nr nr nr better with GM-CSF

39 Cy 6 g/m2 GM-CSF 17 nr nr

Tarella108 11 Cy 7 g/m2 or VP16 2 g/m2 GM-CSF 15 (13-16) 126 6432

4 Cy 231.2 g/m2 no 16 (16-18) 31 462

4 Cy 231.2 g/m2 GM-CSF 14 (14-15) 77 2588

Ossenkoppele111 6 no G-CSF36 gg 6 845

Majolino112 7 VCAD no 20 (17-30) 622

7 VCAD G-CSF 13 (9-17) 22 893

Vasta113 6 VCED G-CSF 13 (12-15) 70 2391

Legend. Cy: cyclophosphamide; VCAD: vincristine 1 mg, cyclophosphamide 4x500 mg/m2, adriamycin 2x50 mg/m2, dexamethasone 4x40 mg. VCED was identical to VCAD except that
epirubicin 2x60 to 80 mg/m2 was substituted for adriamycin. nr: not reported.

Table 6. PBSC mobilization schedules in multiple myeloma.
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ferent mobilization methods.98,108,111,112,117,141 It is
clear that the CD34+ cell peak occurs very early
(approximately day 5 or 6) during mobilization
with growth factors alone. When chemotherapy
is included in the mobilization schedule, the
CD34+ cell peak day occurs later (approximately
day 20), but the subsequent use of growth fac-
tors will shorten it by a week or so. 

To conclude, we suggest (Table 8) mobilizing
PBSC with the combination of chemotherapy
and growth factors (G-CSF or GM-CSF), and
performing serial determinations of CD34+ cells
in the blood. Aphereses should be started as
soon as the level of CD34+ cells exceeds 20/µL,
and collections should be performed daily with
twice the blood volume processed each time.
Continuous-flow separators are to be preferred.
As target for collections, the figure of 23106/kg
CD34+ cells per single autograft should be
adopted for patients with < 24 months of prior
chemotherapy, while a greater number (>
53106/kg) should be collected in patients with a
longer treatment history.

Assessment of myeloma cells in the peripheral
blood and role of ex-vivo purging

PBSC collections are generally believed to
have lower tumor cell contamination than BM
harvests in cancer patients eligible for autograft-
ing. Moreover, the use of circulating progenitor
cells has shown more rapid hematopoietic
reconstitution than reinfusion of BM-derived
cells, thus reducing the incidence of serious
infections and virtually eliminating mortality.142

Consequently, PBSCT is widely used after mye-
loablative therapy for the treatment of myeloma
patients.53,56,59 However, myeloma-related B-cells
bearing the same idiotypic determinant as the

neoplastic plasma cells have been identified in
the blood of MM patients under steady-state
conditions,143-149 and they may play a crucial role
in the pathogenesis of the disease.144,147 Therefore
in this chapter we will review the published data
concerning: i) the presence of MM elements in
PB and their kinetics in response to mobiliza-
tion protocols; ii) methods for myeloma cell
assessment; iii) methods for ex vivo removal of
contaminating tumor cells and the role of purg-
ing with respect to disease relapse. 

Identification of circulating myeloma cells 
Circulating B-cells belonging to the malignant

clone were originally thought to be pre-B-cells
on the basis of the surface expression of the
CD10 (CALLA) Ag,150 an endopeptidase present
on all fetal pre-B and B-cells, on adult pre-B-
cells and their neoplastic counterparts.1 5 1

However, the CD10 Ag has also been found on
activated B-cells151 and does not seem to be
restricted to the early stages of B-lineage differ-
entiation. Moreover, PB abnormal B-lympho-
cytes express plasma cell markers such as PCA-1
and PC-1 and the CD45RO Ag isoform, which is
typical of late B-cells.145 Thus phenotypic analysis
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Regimen Day of Day of No. apheresis References
progenitor peak first apheresis

G-CSF 10 mcg/kg/day 3 6 d 6 6 phlebotomy 3 2 112

Cy 7 g/m2 nr 20 6 117

Cy 7 g/m2 + GM-CSF 15 nr 4 98-108

Cy 7 g/m2 + G-CSF 15 14 2-3 141

VCAD 20 14 6 112

VCAD + G-CSF 13 12 2-3 112

Legend: nr: not reported.

Table 7. Day of cell peak and of
first apheresis after PBSC mobi-
lization in patients with MM. The
addition of G-CSF or GM-CSF
shortens the time to progenitor
peak and consequently the time to
apheresis. Mean number of
apheretic procedures was lower
when growth factors were
employed.

Table 8. Recommendations for PBSC mobilization and their apheretic har-
vest in patients with multiple myeloma.

• Mobilization with chemotherapy + growth factors (G-CSF or GM-CSF)

• Serial CD34+ determinations according to institutional protocol

• Start apheresis when CD34+ cells in blood >203106/L

• Continuous flow separator, volume processed 3 2 blood volume per run

• Collect at least 23106/kg CD34+ cells in patients with < 24 months
prior chemothrapy, at least 5x106/kg CD34+ cells in patients with > 24
months prior chemotherapy
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of circulating CD19+ cells indicates a heteroge-
neous, continuously differentiating B-lineage.145

By physical parameters, CD19+ cells include a
small and a large subset that are mainly late B-
cells (pre-plasma cells) coexpressing CD20,
CD10, PCA-1, CD45RO and CD24 Ag.148 The
majority of large B-cells also express the CD56
Ag and high density CD38, whereas small lym-
phocytes show only minor expression of these 2
antigenic determinants. This phenotypic profile
(i.e. CD19+ CD20+ CD38++ CD56+) is not found
in normal resting B-cells. Interestingly, malig-
nant cells were detected at diagnosis, irrespective
of tumor burden and stage of disease,148 and
treatment had no detectable effect on the large
B-cell subset. Conversely, a significant decrease
in the number of small B-lymphocytes followed
chemotherapy, although these cells returned to
baseline value once the therapy was discontin-
ued. In this regard, it was previously shown that
circulating CD19+ cells in MM express the func-
tional multidrug transporter p-glycoprotein,147,169

thus suggesting that blood B-cells include a
highly drug-resistant subset capable of inducing
disease recurrence in myeloma patients.
However, it should be noted that mature plasma
cells do not always express the CD19 Ag, whereas
the presence of the CD56 Ag discriminates clon-
al plasma cells from normal ones.152 In addition,
the recently described monoclonal antibody B-
B4152 seems to be highly specific for BM and cir-
culating terminal plasma cells.

More recently, the issue of myeloma cell conta-
mination in leukapheresis products and the kinet-
ics of circulating tumor cells in response to mobi-
lization protocols have been addressed.67,69,153-155

These studies have consistently shown that the
majority of PBSC collections, if not all, are cont-
aminated by myeloma cells, which represent up
to 10% of PB mononuclear cells by immunophe-
notyping and molecular analysis using poly-
merase chain reaction (PCR) with consensus
oligonucleotides to the Ig heavy chain comple-
mentary determining region III (CDR III) (see
below).155 The same pattern of contamination
has been shown following high-dose Cy and
either G- or GM-CSF,67,69,155 as well as after G-CSF
alone,154 suggesting that growth factors for stem
cell mobilization, regardless of the use of chemo-

therapy, may influence the expression of adhe-
sion molecules associated with the myeloma cell
membrane. Notably, kinetic analysis has demon-
strated that following high-dose Cy and G-CSF,
the concomitant mobilization of plasma cells
and hematopoietic progenitor cells in the PB
takes place with the maximum peak of neoplas-
tic elements occurring within the optimal time
period for collection of circulating CD34+ cells.67

Conversely, GM-CSF seems to reduce asynchro-
nous mobilization of neoplastic elements and
hematopoietic stem cells into PB, so that the
contamination of actively proliferating myeloma
cells is minimal in the first two days of aphere-
sis.156

Methods for assessment of minimal residual disease
A number of methods have been proposed to

detect malignant cells in the blood of myeloma
patients, including immunologic assessment by
monoclonal antibodies, flow cytometry analysis
of DNA and cytoplasmic Ig, studies on gene
rearrangement. Each of these techniques has
limitations in sensitivity and, in some cases,
specificity. For instance, analysis of the hyper-
variable region of the Ig heavy chain (IgH) gene
using a set of family-specific primers (IgH fin-
gerprinting) requires 0.1% monoclonal cells157

and may produce false positive results.
Conversely, dual-parameter flow cytometric

PBSC transplantation in multiple myeloma

Figure 3. Circulating monoclonal B-lymphocytes and plasma cells
assessed by double fluorescence immunostaining: intracytoplasmic Ig
(green)/nuclear BRDU (red). Bromodeoxyuridine (BRDU) is incorporated in
actively proliferating cells.
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analysis (e.g. CD19/monoclonal light chain) and
evaluation of intracytoplasmic monoclonal
heavy or light chain are highly specific and allow
detection as low as 0.1%67 (Figure 3); however,
they only assess mature Ig+ B-cells. Recently, sev-
eral laboratories have described applications of
PCR techniques to increase significantly the sen-
sitivity and specificity of detection of minimal
residual disease (MRD). Both consensus
oligonucleotides (ODN)146 and family-specific
primers69 have been used to amplify the CDRIII
of rearranged heavy chain alleles (Figure 4) from
myeloma samples. From the sequence of the
amplified products, allele-specific (tumor-specif-
ic) oligonucleotides (ASO) were synthesized and
used directly in PCR amplification reactions
(ASO-PCR) for each patient sample to detect the
malignant clone. The sensitivity of this method
is 1:105 normal cells and a quantitative analysis
can be performed by generating titrations curves
of tumor cells. Alternatively, direct fingerprint-

ing of CDRIII IgH gene rearrangement may be
used, although the sensitivity is 1:104 normal
cells.67

The biological and prognostic significance of
cancer cells present in autologous grafts is still
unknown and circulating myeloma cells may
only reflect advanced stages of the disease;
therefore relapse may be caused by regrowth of
residual clonogenic cells in vivo. However, con-
sidering that MM is a disease intrinsic to BM
and recent studies clearly show that reseeding of
reinfused malignant cells contributes to
relapse,158 several attempts have been made to
remove myeloma cells from BM or PBSC auto-
grafts using different strategies.

Ex vivo purging of myeloma cells
Of the purging methods proposed for the elim-

ination of MRD, the cyclophosphamide deriva-
tive 4-hydroperoxycyclophosphamide (4-HC)
was the first used,159 on the basis of in vitro mod-
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Sequencing

ASO probe construction

clonal CDR-III PCR product at diagnosis

ASO
hybridization negative

ASO
hybridization positive

CDRIII junctional region

non clonal CDRIII PCR product
= molecular remission

clonal CDRIII PCR product
= molecular persistance of minimal residual disease

VH N DH N JH

VH N DH N JHVH N DH N JH

VH N DH N JH

(allele specific oligonucleotide probe)

VH family
consensus oligo

VH  consensus oligo
CDRIII

JH consensus oligo

FRI CDRI FRII CDRII FRIII

Figure 4. Schematic representation of the genomic region of rearranged CDRIII of IgH gene and further utilization of the PCR product for detection of MRD. For
further details see text.



els demonstrating that this compound was able
to eliminate BM-infiltrating MM cell lines.160 The
main mechanism of action of 4-HC is based on a
marked inhibition of myeloma cell growth,
whereas it spares normal primitive hematopoietic
cells.161 Moreover, this alkylating agent seems to
induce the apoptotic death of tumor cells162 as
well as activate immune mechanisms capable of
controlling malignant cell proliferation.1 6 3

Because 4-HC does not affect surface antigen
expression of myeloma cells, it is also a potential
candidate for combined treatment with mono-
clonal antibodies (MoAbs), and preliminary in
vitro data confirm the additive effect of these two
purging techniques.160 Several MoAbs directed
against tumor-associated or cell differentiation
antigens not expressed by primitive cells respon-
sible for hematopoietic engraftment have been
selected for clinical trials after in vitro studies
demonstrated high purging efficacy with the use
of complement,164,165 toxins166,167 or immunoaffinity
columns.168 Gobbi et al. developed a series of
MoAbs that recognize mature plasma cells as well
as B-cell precursors. One of them (8A) was con-
jugated with the ribosome-inactivating toxin
momordin and clinically tested in 8 advanced
stage MM patients to eliminate, ex vivo, contami-
nating myeloma cells prior to ABMT.166 Although
a marked tumor reduction was observed in all
evaluable patients, none of them achieved CR
and hematopoietic reconstitution following the
myeloablative conditioning therapy was signifi-
cantly delayed in 3 patients. These preliminary
results showed the feasibility of this purging
approach despite the poor selection of patients.

The same MoAbs were also employed in vitro
to remove myeloma cells through the avidin-
biotin immunoabsorption technique, and the
result was a greater than 3 log reduction in tumor
cells with acceptable recovery of BM progeni-
tors.168 More recently, Goldmacher et al.167 report-
ed the development of an anti-CD38 immuno-
toxin capable of killing 4-6 logs of human myelo-
ma and lymphoma cell lines. The immunotoxin
was composed of an anti-CD38 antibody conju-
gated to a chemically modified ricin molecule
(blocked ricin). However, the CD38 Ag may not
be the proper target for purging because it is
strongly expressed on myeloma plasma cells (see

above) and on committed hematopoietic progen-
itor cells,169 which are thought to be essential for
rapid BM reconstitution. More specific antibod-
ies directed either toward B-cells (anti-CD10 and
CD20) or mature plasma cells (PCA-1) and com-
plement were used to deplete tumor cells from
the graft before ABMT by Anderson et al.165

Following a TBI-containing conditioning regi-
men, a neutrophil count greater than 0.53109/L
and an unsupported platelet count greater than
203109/L were reached at a median of 21 days
(range 12-46) and 23 days (range 12-53), respec-
tively. Similarly, immunologic reconstitution was
not different from that commonly observed in
cancer patients receiving unmanipulated auto-
graft. This study documented that high-dose
chemo-radiotherapy can produce a high
response rate in pretreated patients with sensitive
disease, and MoAb-based purging methods do
not prevent rapid and sustained engraftment.
However, the occurrence of relapses post-ABMT
and partial responses will not define the need, if
any, for marrow purging until more effective
ablative strategies are developed. Taken together,
these data demonstrate that the heterogeneity of
Ag expression on neoplastic cells and the lack of
true tumor-specific determinants may greatly
influence the efficacy of antibody-based strate-
gies for the depletion of myeloma cells.
Alternatively, long-term Dexter-type marrow
cultures have been used to select normal myeloid
progenitors from heavily infiltrated myeloma
BM, on the basis of the selective growth advan-
tage of benign cells over malignant cells in this
system.170

Enrichment of hematopoietic CD34+ cells has
lately been shown to be an alternative approach
to myeloma cell removal with a limited loss of
normal stem cells. The CD34 Ag is a 110-120 kD
glycoprotein that is mainly expressed on the ear-
liest identifiable precursor cells and committed
myeloid progenitors.169 In normal individuals,
CD34+ cells represent 1% to 4% of the mononu-
clear cell fraction in the BM, whereas they are
barely detectable in the PB.169 In addition, the
CD34 Ag is not expressed on the surface of
mature plasma cells in MM, although the possi-
bility that this glycoprotein may be present on
clonally less differentiated B-lymphocytes is still
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a matter of debate. As reported above, recent
data support the hypothesis that MM originates
in the later stages of B-cell differentiation when
B lymphocytes have lost the CD34 Ag,171 where-
as other studies have found CD34+ cells to be
part of the neoplastic clone.172,173 It should be
underlined, however, that reverse transcription-
PCR, which was used to detect MRD in those
studies, is an extremely sensitive technique, and
the potential contamination of the CD34+ cell
fraction by unwanted cells should be carefully
avoided.

In this respect, Vescio et al.171 did not find IgH
gene clonal rearrangement in collections of
99.99% pure CD34+ cells obtained after using a
combination of two methods of stem cell purifi-
cation. Schiller et al.66 and Lemoli et al.67 reported
the first studies on purified, CD34-selected
PBSCT conducted in patients with advanced
MM. A median of 4.65 and 43106 CD34+ cells/kg
were reinfused in the two trials with a median
purity of 77% and 88.5%, respectively. The medi-
an time to neutrophil and platelet recovery was
12 days and 10 and 11 days, respectively, with no
difference with respect to a group of patients
receiving unmanipulated PBSCs.67

Both reports utilized rigorously quantitative
immunofluorescence and/or IgH gene rearrange-
ment analysis, and tumor cell depletion ranging
from 2.5 to 4.5 logs was achieved. However, the
persistence of myeloma cells in the CD34+ cell
fraction was documented by sensitive PCR assay
in all cases heavily contaminated before positive
selection of CD34+ cells. Thus an additional purg-
ing step may be necessary to achieve a virtually
tumor-free autograft. 

In this regard, studies aimed at optimizing
myeloma cell depletion by positive selection of
primitive CD34+Lin–Thy+ cells have already been
performed155 and clinical trials are currently in
progress. 

In summary, all these studies show the capacity
of purging techniques to eliminate a substantial
proportion of the myeloma cells from autologous
grafts without affecting their engraftment poten-
tial. The clinical impact of purging on disease
relapse remains to be determined in future ran-
domized trials. 

Post-transplant (immuno)therapy
In MM as well as in other hematologic malig-

nancies, the primary objective of high-dose
therapy with hemopoietic stem cell support is to
prolong survival and possibly to cure an other-
wise incurable disease. The aim of post-trans-
plant therapy is to prevent recurrence of the dis-
ease while assuring good quality of life. From
this latter point of view, there is no room for
additional chemotherapy as a preventive means.
In addition, high-dose chemotherapy itself
involves a risk of secondary myelodysplastic
syndrome or acute myeloid leukemia. This risk
is apparently related to prolonged alkylating
agent therapy prior to transplantation and
would undoubtedly increase with additional
post-transplant chemotherapy.

In the past few years interferon-a (IFN-a) has
been extensively evaluated in the management of
MM, either as part of the induction program or
as maintenance therapy.173 Although controver-
sial findings were frequently reported, several
clinical trials showed a prolongation of the
remission phase, and even of the survival dura-
tion, for patients receiving IFN-a after a favor-
able response to conventional chemotherapy.174,175

These results suggested that IFN-a might be par-
ticularly useful in patients with low tumor bur-
den or minimal residual disease, and led to clini-
cal investigations of this agent in the autograft
setting.  

The European Group for Blood and Marrow
Transplantation (EBMT) has recently presented a
retrospective study of a large series of MM
patients treated with autologous stem cell trans-
plantation.50 Interestingly, post-transplant treat-
ment with IFN-a was independently associated
with extended survival of responding patients,
i.e. those achieving either CR or partial remis-
sion. Moreover, Powels et al.176 designed a ran-
domized clinical trial aimed at comparing main-
tenance IFN-a therapy with no maintenance
after HDM and ABMT.175 The authors found that
IFN-a prolonged remission and improved the
survival after autotransplant, and that this effect
was particularly marked in the group of patients
achieving  CR.

Maintenance IFN-a is usually started three
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months after transplant and is given sc at a
dosage of 33106 U/m2, 3 times weekly. This dose
usually induces mild hematological and non-
hematological toxicity, thus allowing good quali-
ty of life. Available data indicate that about 50%
of the MM patients who achieve CR and are then
treated with IFN-a remain in remission four
years after transplantation.

Alternatively, maintenance treatments aimed at
prolonging the duration of disease control after
transplantation may also include the administra-
tion of interleukin 2 (as nonspecific immuno-
therapy)177 or humanized anti-idiotype mono-
clonal antibodies, which could allow selective
killing of myeloma cells and might be particular-
ly useful for controlling minimal residual disease.
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