CEBPA-double-mutated acute myeloid leukemia displays a unique phenotypic profile: a reliable screening method and insight into biological features

Francesco Mannelli,^{1,2} Vanessa Ponziani,^{1,2} Sara Bencini,^{1,2} Maria Ida Bonetti,^{1,2} Matteo Benelli,^{3*} Ilaria Cutini,^{1,2} Giacomo Gianfaldoni,^{1,2} Barbara Scappini,^{1,2} Fabiana Pancani,^{1,2} Matteo Piccini,^{1,2} Tommaso Rondelli,⁴ Roberto Caporale,⁴ Anna Maria Grazia Gelli,⁴ Benedetta Peruzzi,⁴ Marco Chiarini,⁵ Erika Borlenghi,⁶ Orietta Spinelli,⁷ Damiano Giupponi,⁷ Pamela Zanghì,⁷ Renato Bassan,⁸ Alessandro Rambaldi,⁷ Giuseppe Rossi⁶ and Alberto Bosi^{1,2}

¹Unità Funzionale di Ematologia, Università degli Studi, AOU Careggi, Firenze; ²Istituto Toscano Tumori, Firenze; ³SOD Diagnostica Genetica, AOU Careggi, Firenze; ⁴SOD Laboratorio Centrale, Settore Citometria Clinica, AOU Careggi, Firenze; ⁵Centro di Ricerca Emato-Oncologica AIL (CREA), Spedali Civili, Brescia; ⁶Divisione di Ematologia, Spedali Civili, Brescia; ⁷Unità Strutturale Complessa di Ematologia, Ospedali Riuniti, Bergamo and ⁸Divisione di Ematologia, Ospedale dell'Angelo & Ospedale SS. Giovanni e Paolo, Mestre-Venezia, Italy

* Current address: Centro di Biologia Integrativa, Università di Trento, Trento, Italy

©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2016.151910

Received: July 5, 2016. Accepted: October 28, 2016. Pre-published: November 10, 2016. Correspondence: francesco.mannelli@unifi.it

CEBPA-double mutated acute myeloid leukemia displays a unique phenotypic profile: a reliable screening method and insight into biological features

Francesco Mannelli^{1,2}, Vanessa Ponziani^{1,2}, Sara Bencini^{1,2}, Maria Ida Bonetti^{1,2}, Matteo Benelli^{3,*}, Ilaria Cutini^{1,2}, Giacomo Gianfaldoni^{1,2}, Barbara Scappini^{1,2}, Fabiana Pancani^{1,2}, Matteo Piccini^{1,2}, Tommaso Rondelli⁴, Roberto Caporale⁴, Anna Maria Grazia Gelli⁴, Benedetta Peruzzi⁴, Marco Chiarini⁵, Erika Borlenghi⁶, Orietta Spinelli⁷, Damiano Giupponi⁷, Pamela Zanghì⁷, Renato Bassan⁸, Alessandro Rambaldi⁷, Giuseppe Rossi⁶, and Alberto Bosi^{1,2}

- 1) Unità Funzionale di Ematologia, Università degli Studi, AOU Careggi, Firenze, Italy;
- 2) Istituto Toscano Tumori, Firenze, Italy;
- 3) SOD Diagnostica Genetica, AOU Careggi, Firenze, Italy
- 4) SOD Laboratorio Centrale, Settore Citometria Clinica, AOU Careggi, Firenze, Italy;
- 5) Centro di Ricerca Emato-Oncologica AIL (CREA), Spedali Civili, Brescia, Italy;
- 6) Divisione di Ematologia, Spedali Civili, Brescia, Italy;
- 7) Unità Strutturale Complessa di Ematologia, Ospedali Riuniti, Bergamo, Italy;
- 8) Divisione di Ematologia, Ospedale dell'Angelo & Ospedale SS. Giovanni e Paolo, Mestre-Venezia, Italy
- * Current address: Centro di Biologia Integrativa, Università di Trento, Trento, Italy

Corresponding author:

Francesco Mannelli, MD

UF di Ematologia, Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, and Istituto Toscano Tumori, Largo Brambilla 3, 50134 Firenze, Italy

e-mail: <u>francesco.mannelli@unifi.it;</u> Telephone and Fax: +39.055.7946742.

TABLE OF CONTENTS

- A. Supplemental Materials and Methods (pp 3-6)
- **B.** Supplemental Figures and Legends (pp 7-19)
- C. Supplemental Tables (pp 20-36)

Supplemental Materials and Methods

Treatment protocols

<u>Protocol-1</u>: since 2006 to March 2007, patients received induction according to standard ICE course (Cytarabine 100 mg/sqm bid on days 1-7; Idarubicin 12 mg/sqm on days 1-3; Etoposide 100 mg/sqm on days 1-5). High-dose Cytarabine (3000 mg/sqm bid days 1, 3, 5) was used as first consolidation in patients aged < 61 years attaining complete remission (CR) after ICE. Patients with persistent disease (*i.e.* > 5% BM blasts at hematopoietic recovery) after first course received a salvage regimen (FLA-Ida). In an intention-to-treat approach, patients aged < 55 years with high-risk karyotype, FLT3-ITD or adverse clinical features (secondary AML, CR after second course, hyperleukocytosis) were assigned to undergo allogeneic stem cell transplantation (SCT) from matched related or unrelated donor. Patients with intermediate cytogenetic risk in the absence of FLT3-ITD and adverse clinical features were allocated to allogeneic SCT if a related donor was available. Autologous SCT was offered to patients aged < 61 y with low-risk cytogenetics, intermediate-risk cytogenetics without sibling donor and high-risk disease not eligible to allogeneic SCT. Peripheral blood (PB) stem cells for autologous SCT were collected after a DIA course (Cytarabine 500 mg/sqm bid on days 1-6; Daunorubicin 50 mg/sqm on days 4-6). Patients who failed mobilization received two additional courses with high-dose cytarabine.

<u>Protocol-2</u>: since April 2007 to 2013, patients were enrolled in Northern Italy Leukemia Group (NILG) AML 02-06 protocol (Eudract code: 2006-003817-42). The protocol provided a randomization at induction between a standard ICE induction *versus* an experimental intensified one. Patients aged > 65 y were treated according to standard arm. Upon CR achievement, patients received standard doses cytarabine consolidation and were divided into standard and high risk cases (SR, HR): SR: favorable or intermediate risk cytogenetics (according to SWOG criteria) without any adverse clinical factor (secondary AML, FLT3-ITD, CR after cycle 2, persistence of pre-existing cytogenetic abnormality despite morphological CR; total WBC count >50 x10⁹/L); HR: all non-SR cases. HR patients were assigned to undergo allogeneic SCT. Provided sufficient CD34+ cells were previously collected (>2x10⁶/kg) upon recovery from high doses cytarabine, SR patients and HR patients excluded from allo-SCT and aged 65 years or less were randomized between autologous SCT and high doses consolidation therapy (R2). HR/SR patients unable to be randomized in R2 because of inadequate blood stem cell yield received intermediate-dose consolidation. Patients randomized to experimental arm were excluded from outcome analysis.

Karyotype:

Complex karyotype was defined by the presence of \geq three cytogenetic aberrations according to European Leukemia Net (Döhner H *et al*, Blood. 2010;115:453).

Molecular Genetics:

NPM1 mutations: NPM1+ AML was defined by immunohistochemical criteria and/or by mutational analysis, as specified below. Total RNA was extracted from Ficoll–Hypaque isolated mononuclear cells. RNA was reverse-transcribed using random examers. NPM1 exon 12 was amplified as previously described with minor modification (Noguera *et al*, Leukemia 2005;19:1479–82). Briefly, 2 μ l of cDNA were amplified in a total volume of 25 μ l of the reaction mixture containing 1x PCR

buffer, 0.2mM dNTP, 2mM MgCl2, 1.25 U Hot Start Taq polymerase, and 10 pmol of each primer (HEX NPM-Rev6 5'- ACCATTTCCATGTCTGAGCACC-3', NPM-F25'-ATCAATTATGTGAAGAATTGCTTAC-3'). Pre-heating of the mixture at 94°C for 5 min was followed by 30 cycles of 30 s at 94°C, 45 s at 57°C, and 45 s at 72°C. A final extension of 10 min was carried out at 72°C on a Gene Amp PCR System 2400 (Perkin Elmer, Emeryville, CA, USA). NPM1 amplified product was separated with a capillary electrophoresis-based system (ABI PRISM 310 genetic analyzer, Applied Biosystems).

FLT3-ITD mutation: Approximately 100 ng of genomic DNA was amplified to produce a 328 bp fragment from wild-type alleles. Amplification was performed for 30 cycles (30 seconds at 95°C, 30 seconds at 60°C, 30 seconds at 72°C) followed by 40 minutes at 72°C, in a reaction mix containing 1x buffer, 2.0 mM MgCl2, 0.2mM dNTPs and 10 pmol each primer (11F: FAM 5'-GCAATTTAGGTATGAAAGCCAGC-3' and 12R: 5'-CTTTCAGCATTTTGACGGCAACC-3') and 1.25U Hot Start Taq polymerase in a total volume of 25 uL. FLT-3 amplified product was separated with a capillary electrophoresis-based system (ABI PRISM 310 genetic analyzer, Applied Biosystems).

CEBPA mutations: Mutations of CEBPA gene were detected by genomic DNA PCR and direct sequencing. The primer sets are those designed by Pabst et al (Nat Genet. 2001;27:263). Briefly, three overlapping primer pairs were used to amplify the entire coding region of human CEBPA: AF-TCGCCATGCCGGGAGAACTCTAAC, **CEBPA** CEBPA AR-BF-CCGCTGGTGATCAAGCAGGA, AGCTGCTTGGCTTCATCCTCCT (548bp); CEBPA **BR-CCGGTACTCGTTGCTGTTCT CEBPA** CF-CEBPA (390bp); CR-CACGGTCTGGGGCAAGCCTCGAGAT CAAGGCCAAGAAGTCGGTGGACA, CEBPA (356bp). PCR reactions were run in a final volume of 50 µL containing genomic DNA (300 ng), KCl (50 mmol/L), Tris-HCl (20 mmol/L, pH 8.4), MgCl2 (2.5 mmol/L), 5 volume % DMSO, primers (2 mmol/L of each), nucleotides (0.1 mmol/L of each), and Taq DNA polymerase (1U). PCR conditions were: 94°C for 45 seconds, 62°C for 45 seconds and 72°C for 45 seconds for 45 cycles, with a final step for 10 minutes at 72°C. PCR products were sequenced using BigDye Terminator Cycle Sequencing Kit o v1.1 kit (Applied Biosystems) on ABI 3730 Genetic Analyzer (Applied Biosystems).

Flow cytometry:

 2×10^{6} cells of a fresh BM suspension were stained for surface markers using a stain-lyse-and-thenwash procedure; intracellular nuclear and cytoplasmic staining were performed after cell fixation and permeabilization, using Fix and Perm kit (Invitrogen, Carlsbad, CA, USA).

Data acquisition was performed using a FACSCalibur flow cytometer (BD Biosciences) and Cell Quest Pro software (BD) or FACSCanto II flow cytometer (BD) and FACSDiva software (BD). A total of 250,000 cells per tube was acquired.

<u>FACSCalibur:</u> Samples were acquired by FACSCalibur flow cytometer and Cell Quest Pro software (BD Biosciences). The following combinations of monoclonal antibodies (MoAb) in 4-color staining (fluorescein isothiocyanate/phycoerythrin/peridinin chlorophyll protein/allophycocyanin) were used:

HLA-DR/CD117/CD45/CD34; HLA-DR/CD123/CD45/CD34; CD11b/CD13/CD45/CD34; CD16/CD33/CD45/CD34; CD15/CD16/CD45/CD34; CD71/CD105/CD45/CD34; CD2/CD56/CD45/CD34; CD65/NG2/CD45/CD34; CD11b/CD64/CD45/CD34; CD36/CD64/CD45/CD34; CD14/CD64/CD45/CD34; nTdT/cyMP0/CD45/CD34; CD19/cyCD79a/CD45/CD34; cyCD3/CD7/CD45/CD34.

All MoAb were purchased from Becton Dickinson (BD,San Jose, CA, USA), excluding nTdT, cyMPO (Dako, Glostrup, Denmark), CD11b, CD65 (Immunotech, Marseille, France) and CD105 (e-Bioscience, San Diego, CA, USA).

Monoclonal antibodies' clones were: HLA-DR: G46-6; CD117: YB5.B8; CD45: HI30; CD34: 581; CD123: 7G3; CD11b: M1/70; CD13: WM15; CD22: S-HCL-1; CD33: HIM3-4; CD15: HI98; CD16: 3G8; CD71: M-A712; CD105: SN6; CD2: RPA-2.10; CD56: MY31; CD65: 88H7; NG2: 7.1; CD36: CB38; CD64: 10.1; CD14: M5E2; nTdT: HT-6; cyMPO: MPO-7; CD19: 4G7; cyCD79a: HM-57; cyCD3: HIT3a; CD7: M-T701.

Instrument setup, calibration and quality control were performed in order to assure measures' stability. Specifically, consistency of fluorescence intensity was monitored at least weekly by running fluorochrome-conjugated beads (Calibrite beads, BD). Fluorescence photomoltiplier voltages were adjusted until the mean channel values for the unlabeled beads corresponded to predetermined target values. Overtime stability of bead mean fluorescence intensity profile was checked by Levey-Jennings diagrams; changes of up to 15% of the mean target MFI were considered acceptable. The mixed-bead suspension was used to determine the appropriate compensation settings.

<u>FACSCanto II</u>: In order to verify the capability of the classifier to predict for CEBPA mutation status also with a different instrument, a subgroup of AML samples (n=94) from main cohort were acquired also by FACSCanto II flow cytometer (BD) and FACSDiva software (BD), along with 20 control bone marrows. Sample processing was the same as above.

The following combinations of monoclonal antibodies (MoAb) in 7-color staining (fluorescein isothiocyanate / phycoerythrin / peridinin chlorophyll protein 5.5 / phycoerythrin-Cy7 / allophycocyanin / allophycocyanin-H7 / pacific blue / pacific orange) were used:

CD15/CD64/CD34/CD117/CD7/CD45/HLA-DR CD65/CD64/CD34/CD117/CD14/CD45/HLA-DR

MoAb were purchased from: CD15, CD64, CD34, CD14: Becton Dickinson, San Jose, CA, USA; HLA-DR: Biolegend, San Diego, CA, USA; CD45: Invitrogen, Waltham, MA, USA; CD7: eBioscience, San Diego, CA, USA; CD117: Beckman Coulter, Brea, CA, USA; CD65: Immunotech, Marseille, France

Monoclonal antibodies' clones were: HLA-DR: L243; CD117: 104D2D1; CD45: HI30; CD34: 8G12; CD15: HI98; CD65: 88H7; CD64: 10.1; CD14: M0P9; CD7: 124-1D1.

<u>Analysis</u>: For data analysis, Infinicyt (Cytognos SL, Salamanca, Spain) software was used. Some major BM cell compartments were identified on the basis of forward (FSC) and sideward (SSC)

light scatter and their reactivity for CD45 (Supplemental Data Figure 1). These subsets were: (i) blasts; (ii) maturing neutrophil compartment, selected on the basis of CD45+dim/CD34- with high SSC; (iii) monocytic compartment (CD45+hi/CD34- with intermediate SSC signal); (iv) mature erythroid compartment (CD45-/CD34- with low SSC). Within neutrophil compartment, 4 stages of maturation were identified depending on reactivity for CD13 and CD11b (Supplemental Data Figure S1B). Cell compartments were considered not assessable when not detectable as at least 0.01% of total BM cells.

<u>Setup</u>: Instrument setup, calibration and quality control were performed in order to assure measures stability. Specifically, consistency of fluorescence intensity was monitored at least weekly by running fluorochrome-conjugated beads (CS&T beads, BD). Fluorescence photomoltiplier voltages were adjusted until the mean channel values for the unlabeled beads corresponded to predetermined target values. Overtime stability of bead mean fluorescence intensity profile was checked by Levey-Jennings diagrams; changes of up to 15% of the mean target MFI were considered acceptable.

Statistical analysis:

<u>Outcome</u>: The definition of CR used established criteria (Cheson *et al*, JCO 2003;21:4642). Survival was calculated by Kaplan-Meier curves and the log rank test. Disease-free survival (DFS) was measured from CR date to relapse or last follow up; Overall survival (OS) from the diagnosis to the last observation or death. In order to rule out an impact by allogeneic SCT, we censored patients receiving allogeneic SCT at the date of transplant in a further analysis.

<u>Ward hierarchical clustering</u>: The data were stored in a database (Microsoft Excel; Microsoft, Seattle, WA, USA) and normalized. In order to normalize each patient data, we calculated the mean value of each parameter across all normal samples. Normalized data were obtained dividing the value of each individual by the calculated mean. Finally, all the data were log_2 -trasformed and the resulting log_2 ratios were used for hierarchical clustering study.

<u>Euclidean distance-based classifier</u>: To predict CEBPA-dm status, we developed a specific euclidean distance based classifier on a selected group of phenotypic parameters. For each phenotypic parameter, we computed the mean of the normalized data across the 16 CEBPA-dm samples of the discovery dataset. We then defined the maximum euclidean distance between CEBPA-dm samples and this set of averages (named CEBPA-dm reference vector) as classification threshold. The samples in the validation dataset showing a distance between their normalized phenotypic data and the CEBPA-dm reference vector less than or equal to the threshold were classified as "highly probable" CEBPA-dm.

Supplemental Figures and Legends

Figure S1. Identification of cell compartments at AML diagnosis. Bivariate dot plots illustrates how the different cells compartments were identified on the basis of light scatter characteristics and reactivity for CD45 PerCP (A). Within neutrophil compartment, 4 stages of maturation were identified depending on reactivity for CD13 and CD11b (B). Dot plots were created by using Infinicyt software.

Figure S2. Phenotypic profile of blasts according to CEBPA status. Box plots illustrate the distribution of values in CEBPA-dm, -sm, -wt and controls for some core parameters: (A) CD34%; (B) CD15%; (C) CD117 MFI; (D) CD7%; (E) CD36%; (F) CD64%. Box plots were generated by R software. Boxes represent the interquartile range containing 50% of the cases; the horizontal line marks the median; dots are single cases.

CEBPA-dm: double mutated; -sm: single mutated; -wt: wild type; MFI: Mean Fluorescence Intensity.

Figure S3. Phenotypic profile of neutrophil compartment according to CEBPA status. Box plots illustrate the distribution of values in CEBPA-dm, -sm, -wt and controls for some core parameters: (A) SSC MI; (B) CD64 MFI; (C) CD65 MFI. Box plots were generated by R software. Boxes represent the interquartile range containing 50% of the cases; the horizontal line marks the median; dots are single cases.

CEBPA-dm: double mutated; -sm: single mutated; -wt: wild type; SSC: Side Scatter; MI: Mean Intensity; MFI: Mean Fluorescence Intensity.

Figure S4. Phenotypic profile of monocytic compartment according to CEBPA status. Box plots illustrate the distribution of values in CEBPA-dm, -sm, -wt and controls for some core parameters: (A) SSC MI; (B) CD36 MFI; (C) CD64 MFI. Box plots were generated by R software. Boxes represent the interquartile range containing 50% of the cases; the horizontal line marks the median; dots are single cases.

CEBPA-dm: double mutated; -sm: single mutated; -wt: wild type; SSC: Side Scatter; MI: Mean Intensity; MFI: Mean Fluorescence Intensity.

Figure S5. Phenotypic profile of erythroid compartment according to CEBPA status. Box plots illustrate the distribution of values in CEBPA-dm, -sm, -wt and controls for some core parameters: (A) CD36%; (B) CD117%; (C) CD71 CV; (D) CD105 MFI; (E) CD105%. Box plots were generated by R software. Boxes represent the interquartile range containing 50% of the cases, the horizontal line marks the median; dots are single cases.

CEBPA-dm: double mutated; -sm: single mutated; -wt: wild type; CV: Coefficient of Variation; MFI: Mean Fluorescence Intensity.

Figure S6. CEBPA mutational analysis on sorted cell fractions in one CEBPA-single mutant patient. Cell compartments are shown on the left, with core phenotypic parameters for blasts (A), erythroid (B) and T lymphocytic (C) compartments. Neutrophil and monocytic cells were not sorted due to scarce cellularity. In the corresponding plots, ungated cells are in grey whereas the relevant cell population is highlighted by color: red for blasts, green for erythroid and orange for T-lymphocytes. The relative data from CEBPA mutational analysis are reported on the right, together with mutation type.

Figure S7. Cluster analysis according to genotypic groups within intermediate risk karyotype category. Cluster analysis of controls (n=21) and AML cases with intermediate risk karyotype (n=150) based on the phenotypic parameters of all bone marrow (BM) cell compartments at diagnosis. Columns represent individual BM samples; rows represent the normalized log_2 ratios of each parameter analyzed in a given cell compartment divided by the mean value obtained for that parameter in all control samples. The value of each parameter is represented in a color code according to control values: blue represents expression greater than the mean, red expression lower than the mean, white when not available; color intensity represents the magnitude of the deviation from the mean. Cluster analysis was carried out by R software.

Figure S8. Cluster analysis according to genotypic groups within CD7-positive AML cases. Cluster analysis of controls (n=21) and AML cases (n=109) featured by positivity for CD7, as defined by EGIL (i.e. > 20% of total blasts), based on the phenotypic parameters of all bone marrow (BM) cell compartments at diagnosis. Columns represent individual BM samples; rows represent the normalized log_2 ratios of each parameter analyzed in a given cell compartment divided by the mean value obtained for that parameter in all control samples. The value of each parameter is represented in a color code according to control values: blue represents expression greater than the mean, red expression lower than the mean, white when not available; color intensity represents the magnitude of the deviation from the mean. Cluster analysis was carried out by R software.

Figure S9. Outcome analysis according to genotypic groups within CD7-positive AML cases. An outcome analysis was carried out for 90 out of 109 CD7+ AML patients that were intensively treated. Kaplan Meier curves are stratified upon CEBPA status: overall CD7+ (black), CEBPA-wt/sm (red), CEBPA-dm (green) with p values representing the comparison between the latter two subgroups. (A) Disease-free survival (DFS); (B) Overall Survival (OS).

Figure S10. Principal component analysis of CEBPA-dm cases *versus* **other genotypes.** The multi-dimensional analysis of phenotypic profile of parameters included in the classifier was able to distinguish CEBPA-double mutant cases from other genotypic groups: AML bearing (A) AML1-ETO, (B) CBF-MYH11, (C) NPM1 mutations, (D) CEBPA-single mutant, (E) complex karyotype. Bi-plots are generated by the combination of first 2 principal components (PC), featured by the highest values of variance. Ellipses represent graphically the area of 95% confidence interval of the distribution for PCs. Samples outside ellipse are outliers. PCA analysis was carried out by R software.

Figure S11. Cluster analysis according to genotypic groups based upon a selected group of phenotypic parameters. Cluster analysis of controls (n=21) and AML cases (n=251), based on the selected group of phenotypic parameters included in the classifier. Columns represent individual BM samples; rows represent the normalized log_2 ratios of each parameter analyzed in a given cell compartment divided by the mean value obtained for that parameter in all control samples. The value of each parameter is represented in a color code according to control values: blue represents expression greater than the mean, red expression lower than the mean, white when not available; color intensity represents the magnitude of the deviation from the mean. Cluster analysis was carried out by R software.

Figure S12. Cluster analysis according to genotypic groups based upon a selected group of phenotypic parameters. Cluster analysis of controls (n=20) and AML cases (n=94) acquired by a different flow cytometer (FACSCanto II), based on the selected group of phenotypic parameters included in the classifier. Columns represent individual BM samples; rows represent the normalized log_2 ratios of each parameter analyzed in a given cell compartment divided by the mean value obtained for that parameter in all control samples. The value of each parameter is represented in a color code according to control values: blue represents expression greater than the mean, red expression lower than the mean, white when not available; color intensity represents the magnitude of the deviation from the mean. Cluster analysis was carried out by R software.

Figure S13. Proposal for integration of phenotype-based classifier in the diagnostic work-out of AML. The application of the classifier at diagnosis might provide a focused application of molecular techniques in order to reveal a CEBPA-dm status. In case of "highly probable" CEBPA-dm by phenotype and single mutant by Sanger sequencing, the application of next-generation sequencing could discriminate between an actual single mutant and bi-allelic mutations on the same part of the gene, sometimes troublesome by Sanger method.

Supplemental Tables and Results

Table SI. Phenotypic parameters in blast compartment according to CEBPA-status. Parameters are expressed as percentage of positive cells within cell compartment and/or its mean fluorescence intensity (MFI). Median values for phenotypic parameters are reported and compared by the Mann–Whitney test.

	Overall	CEBPA-wt	CEBPA-sm	CEBPA-dm	Controls	sm vs wt	sm vs crtl	sm vs dm	dm vs ctrl	dm vs wt
Blasts/CD34+	cells									
% tot	45.9 (0.1- 97.7)	44.0 (0.1-97.7)	51.4 (14.7-84.5)	55.3 (23.4-74.3)	0.9 (0.2-1.8)	.355	<.0001	.889	<.0001	.14
FSC MI	461.5 (210.6- 788.8)	460.5 (210.6- 788.8)	458.7 (312.2-541.2)	527.5 (368.0-40.4)	417.5 (358.8- 516.9)	.659	.283	.0315	.0002	.02
SSC MI	64.4 (25.9- 225.6)	65.2 (25.9-225.6)	62.9 (35.2-87.0)	58.1 (50.2-76.0)	57.0 (47.1-69.4)	.739	.173	.257	.78	.0282
CD45 MFI	455.5 (133.7- 1977.3)	450.4 (133.7- 1977.3)	510.0 (212.7- 1156.9)	482.1 (329.0- 695.0)	475.4 (277.9- 568.8)	.358	.094	.522	.55	.688
CD34 %	92 (0-100)	86.5 (0-100)	4 (0-100)	100 (95-100)	100 (100-100)	.0072	-	.0004	-	.0011
CD34 MFI	163.3 (1.5- 2309.3)	230.1 (21.5- 314.3)	16.0 (1.6-509.6)	429.5 (70.0-939.0)	256.3 (148.2- 500.8)	.0011	.0004	.0002	.026	.0041
CD13 MFI	690.0 (15.4- 4210.0)	783.5 (47.6- 970.1)	578.9 (90.5-989.0)	543.3 (125.0- 852.0)	572.8 (364.6- 917.6)	.276	.929	.533	.137	.0359
CD33 MFI	734.2 (1.0- 4692.0)	918.4 (71.2- 1197.5)	1031.9 (102.1- 3514.0)	757.0 (366.0- 1480.0)	444.7 (66.6- 718.5)	.368	.012	.301	.0003	.628
CD117 MFI	680.0 (11.4- 4943.1)	643.6 (11.4- 4943.1)	498.6 (304.0- 1248.2)	979.2 (633.0- 1508.7)	586.7 (438.0- 899.0)	.448	.396	.0018	<.0001	.0002

HLA-DR	1040.0 (14.1-	992.8 (14.1-	1050.8 (27.3-	1186.5 (894.0-	1591.0 (1001.9-	.946	.007	.251	.0015	.171
MIFI	6680.1)	6680.1)	1962.3)	1924.0)	2502.6)					
CD7 %	10 (0-100)	6 (0-100)	8 (0-100)	93.5 (75-100)	14 (8-19)	.354	.684	.0078	<.0001	<.0001
MPO %	45 (0-100)	36.5 (0-100)	80 (0-100)	88 (45-100)	34 (26-50)	.614	.164	.212	<.0001	.0015
TdT %	0 (0-100)	0 (0-100)	0 (0-0)	0 (0-0)	0 (0-0)	-	-	-	-	-
CD56 %	0 (0-100)	0 (0-100)	0 (0-4)	5.5 (0-100)	0 (0-0)	.434	-	.0687	-	.053
CD15 %	35 (0-100)	30 (0-100)	50 (7-90)	86.5 (50-95)	23 (14-30)	.175	.032	.0127	<.0001	<.0001
CD64 %	20 (0-100)	20 (0-100)	37 (0-80)	77.5 (8-95)	22 (14-28)	.298	.331	.0055	<.0001	<.0001
CD65 %	12 (0-100)	10 (0-82)	16 (2-90)	62.5 (50-100)	21 (12-34)	.067	.625	.003	<.0001	<.0001
CD36 %	5 (0-100)	5 (0-100)	0 (0-13)	15.5 (5-20)	17 (10-26)	.125	<.0001	.0002	.088	.0001
CD11b%	2 (0-100)	3 (0-100)	0 (0-30)	0 (0-10)	2 (0-5)	.157	.927	.75	.326	.017
CD38 %	95 (0-100)	94 (0-100)	96 (40-100)	99 (95-100)	90 (84-98)	.261	.025	.118	<.0001	.0002
CD25 %	0 (0-100)	0 (0-100)	10 (0-90)	0 (0-0)	3 (0-6)	.99	.415	-	-	-
CD19 %	0 (0-100)	0 (0-100)	0 (0-100)	0 (0-0)	0 (0-0)	.737	-	-	-	-
CD22 %	0 (0-95)	0 (0-95)	0 (0-12)	0 (0-0)	8 (4-18)	.923	.004	-	-	-
CD2 %	0 (0-100)	0 (0-100)	0 (0-0)	0 (0-5)	9 (6-19)	-	-	-	<.0001	.24

Table SII. Phenotypic parameters in granulocytic compartment according to CEBPA-status. Parameters are expressed as percentage of positive cells within cell compartment and/or its mean fluorescence intensity (MFI). Median values for phenotypic parameters are reported and compared by the Mann–Whitney test.

	Overall	CEBPA-wt	CEBPA-sm	CEBPA-dm	Controls	sm vs wt	sm vs crtl	sm vs dm	dm vs ctrl	dm vs wt
Granulocytic cor	npartment									-
% tot	9.3 (0.03-71.8)	9.3 (0.03-71.8)	7.4 (1.4-45.3)	12.6 (1.1-39.8)	63.8 (50.3-77.8)	.652	<.0001	.421	<.0001	.699
FSC	586.9 (269.9- 821.0)	590.8 (269.9- 821.0)	563.7 (435.0- 784.5)	576.4 (484.0- 720.1)	660.8 (598.6- 754.7)	.581	.0077	.420	.0025	.781
SSC	191.0 (23.7- 687.7)	194.5 (23.7- 566.0)	203.7 (77.5- 687.7)	148.7 (112.6- 175.5)	214.8 (202.1- 285.1)	.750	.163	.0231	<.0001	<.0001
CD45	562.5 (109.5- 1640.3)	576.3 (109.5- 1640.3)	461.6 (273.6- 1080.2)	509.5 (213.0- 762.2)	720.8 (299.6- 949.4)	.573	.0311	.897	.0004	.317
CD15 MFI	5900.0 (1222.8- 9960)	6082.1 (1222.8- 9960)	5495.4 (3155.6- 9345)	5524.0 (4190- 8235)	6371.5 (4455- 8746)	.564	.059	.736	.052	.661
CD15 CV	43.5 (3.0-187.2)	42.0 (3.0-187.2)	49.1 (11.5-101.9)	42.7 (18.9-81.0)	27.9 (7.7-44.4)	.335	.0002	.219	.0025	.575
CD16 %	35 (0-100)	36 (0-100)	24.5 (0-50)	40.5 (20-80)	49 (36-76)	.048	<.0001	.048	.0042	.970
CD13	731.3 (81.5- 3836.0)	783.0 (91.2- 3836.0)	665.6 (172.6- 1225.0)	451.5 (81.5- 781.0)	854.3 (361.1- 1385.6)	.125	.0389	.263	<.0001	.0006
CD11b	643.9 (41.6- 4175)	668.0 (41.6- 4175.0)	537.9 (129.7- 945.4)	553.8 (396.0- 686.5)	920.9 (744.5- 1331.2)	.194	<.0001	.99	<.0001	.0652
CD65	915.0 (29.6- 3689.6)	940.3 (29.6- 3689.6)	945.8 (152.2- 1603.3)	447.5 (213.1 (971.0)	1528.4 (804.9- 2582)	.639	.0022	.0087	<.0001	<.0001
CD33	302.0 (14.0- 3757.1)	298.0 (14.0- 3757.1)	506.5 (125.7- 1288.0)	316.6 (116.6- 647.2)	256.3 (70.0- 456.3)	.202	.0433	.310	.026	.695
CD64	328.0 (29.1- 2702.6)	328.0 (29.1- 2702.6)	310.2 (147.5- 1331.9)	600.0 (320.4- 1166.0)	248.4 (122.5- 434.7)	.99	.416	.0484	<.0001	<.0001

MPO	2080.0 (121.0-	2167.0 (121.0-	1490.0 (481.0-	1181.5 (912.0-	2062.0 (1012.4-	.068	.147	.856	.0067	.0003
	8730.1)	8730.1)	6660.3)	2100)	4655)					
CD10 %	20 (0-100)	20 (0-100)	17.5 (0-40)	35 (4-45)	50 (26-73)	.346	<.0001	.020	.0001	.202
CD123 %	15 (0-100)	15 (0-100)	45 (10-85)	23.5 (0-42)	0 (0-20)	.006	<.0001	.042	<.0001	.150
CD4 %	25 (0-100)	25 (0-100)	40 (5-75)	25 (10-33)	14 (8-27)	.137	.0005	.0038	.002	.766
CD56 %	0 (0-100)	0 (0-100)	0 (0-55)	0 (0-10)	0 (0-0)	.98	-	.97	-	.909
CD14 %	0 (0-70)	0 (0-70)	0 (0-0)	0 (0-0)	0 (0-0)	-	-	-	-	-
Stage I %	5.9 (0.01-93.7)	6.4 (0.01-93.7)	8.1 (1.5-33.0)	2.7 (1.3-11.4)	0.5 (0.1-2.1)	.582	<.0001	.027	<.0001	.073
Stage II %	18.5 (0.3-87.5)	18.7 (0.3-87.5)	27.3 (12.7-64.7)	16.3 (4.4-25.4)	10.4 (2.5-21.5)	.322	<.0001	.037	.010	.202
Stage III %	20.9 (0.3-74.4)	19.8 (0.3-74.4)	23.3 (2.6-34.0)	38.2 (12.4-55.7)	38.7 (14.0-43.3)	.59	.0001	.0008	.85	<.0001
Stage IV %	46.1 (2.4-100)	48.5(2.4-100)	116(138753)	11 5 (28 5 76 3)	50 0 (40 2 80 0)	583	201	938	005	.382
		+0.5 (2.+-100)	44.0 (13.8-75.5)	41.3 (28.3-70.3)	50.9 (40.2-80.9)	.565	.201	.750	.005	
Stage I FSC	606.9 (329.9- 870.1)	600.7 (329.9- 870.1)	604.3 (471.2- 673.8)	630.4 (511.0- 733.7)	682.8 (493.7- 836.4)	.519	.003	.228	.027	.295
Stage I FSC Stage II FSC	606.9 (329.9- 870.1) 629.0 (273.3- 907.7)	600.7 (329.9- 870.1) 627.1 (273.3- 907.7)	604.3 (471.2- 673.8) 607.7 (455.9- 781.1)	630.4 (511.0- 733.7) 660.5 (536.0- 660.5)	682.8 (493.7- 836.4) 857.6 (632.4- 958.0)	.519	.003	.228	.027	.295
Stage I FSC Stage II FSC Stage III FSC	606.9 (329.9- 870.1) 629.0 (273.3- 907.7) 640.1 (348.5- 852.0)	600.7 (329.9- 870.1) 627.1 (273.3- 907.7) 643.5 (348.5- 852.0)	604.3 (471.2- 673.8) 607.7 (455.9- 781.1) 618.0 (450.4- 801.8)	41.3 (28.3-70.3) 630.4 (511.0- 733.7) 660.5 (536.0- 660.5) 623.8 (535.9- 723.0)	682.8 (493.7- 836.4) 857.6 (632.4- 958.0) 713.6 (526.4- 713.6)	.519 .419 .908	.003 <.0001 .0401	.228 .207 .933	.000 <.0001 .0003	.295 .389 .581
Stage I FSCStage II FSCStage III FSCStage IV FSC	606.9 (329.9- 870.1) 629.0 (273.3- 907.7) 640.1 (348.5- 852.0) 203.0 (69.7- 721.8)	600.7 (329.9- 870.1) 627.1 (273.3- 907.7) 643.5 (348.5- 852.0) 558.0 (305.9- 821.7)	604.3 (471.2- 673.8) 607.7 (455.9- 781.1) 618.0 (450.4- 801.8) 526.1 (403.0- 725.6)	41.3 (28.3-70.3) 630.4 (511.0- 733.7) 660.5 (536.0- 660.5) 623.8 (535.9- 723.0) 575.1 (404.0- 672.2)	682.8 (493.7- 836.4) 857.6 (632.4- 958.0) 713.6 (526.4- 713.6) 648.9 (489.2- 732.3)	.519 .419 .908 .618	.003 <.0001 .0401 .0101	.228 .207 .933 .391	.003 .027 <.0001 .0003 .0014	.295 .389 .581 .732
Stage I FSC Stage II FSC Stage III FSC Stage IV FSC	606.9 (329.9- 870.1) 629.0 (273.3- 907.7) 640.1 (348.5- 852.0) 203.0 (69.7- 721.8) 163.1 (44.0-	600.7 (329.9- 870.1) 627.1 (273.3- 907.7) 643.5 (348.5- 852.0) 558.0 (305.9- 821.7) 175.0 (44.0-	604.3 (471.2- 673.8) 607.7 (455.9- 781.1) 618.0 (450.4- 801.8) 526.1 (403.0- 725.6) 203 5 (67.4-	41.3 (28.3-70.3) 630.4 (511.0- 733.7) 660.5 (536.0- 660.5) 623.8 (535.9- 723.0) 575.1 (404.0- 672.2) 136.5 (104.7-	682.8 (493.7- 836.4) 857.6 (632.4- 958.0) 713.6 (526.4- 713.6) 648.9 (489.2- 732.3) 178.8 (152.6-	.519 .419 .908 .618	.003 <.0001 .0401 .0101	.228 .207 .933 .391	.003 .027 <.0001 .0003 .0014	.295 .389 .581 .732
Stage I FSC Stage II FSC Stage III FSC Stage IV FSC Stage I-III SSC	606.9 (329.9- 870.1) 629.0 (273.3- 907.7) 640.1 (348.5- 852.0) 203.0 (69.7- 721.8) 163.1 (44.0- 350.5)	600.7 (329.9- 870.1) 627.1 (273.3- 907.7) 643.5 (348.5- 852.0) 558.0 (305.9- 821.7) 175.0 (44.0- 350.2)	604.3 (471.2- 673.8) 607.7 (455.9- 781.1) 618.0 (450.4- 801.8) 526.1 (403.0- 725.6) 203.5 (67.4- 280.0)	41.3 (28.3-70.3) 630.4 (511.0-733.7) 660.5 (536.0-660.5) 623.8 (535.9-723.0) 575.1 (404.0-672.2) 136.5 (104.7-170.0)	682.8 (493.7- 836.4) 857.6 (632.4- 958.0) 713.6 (526.4- 713.6) 648.9 (489.2- 732.3) 178.8 (152.6- 239.6)	.519 .419 .908 .618 .804	.003 <.0001 .0401 .0101 .787	.228 .207 .933 .391 .097	.003 .027 <.0001 .0003 .0014 <.0001	.295 .389 .581 .732 .006
Stage I FSCStage II FSCStage III FSCStage IV FSCStage I-III SSCStage IV SSC	606.9 (329.9- 870.1) 629.0 (273.3- 907.7) 640.1 (348.5- 852.0) 203.0 (69.7- 721.8) 163.1 (44.0- 350.5) 203.0 (69.7- 721.8)	43.3 (2.4-100) 600.7 (329.9- 870.1) 627.1 (273.3- 907.7) 643.5 (348.5- 852.0) 558.0 (305.9- 821.7) 175.0 (44.0- 350.2) 209.1 (69.7- 521.0)	604.3 (471.2- 673.8) 607.7 (455.9- 781.1) 618.0 (450.4- 801.8) 526.1 (403.0- 725.6) 203.5 (67.4- 280.0) 214.6 (81.6- 721.8)	41.3 (28.3-70.3) 630.4 (511.0- 733.7) 660.5 (536.0- 660.5) 623.8 (535.9- 723.0) 575.1 (404.0- 672.2) 136.5 (104.7- 170.0) 156.3 (127.7- 201.2)	50.9 (40.2-30.9) 682.8 (493.7- 836.4) 857.6 (632.4- 958.0) 713.6 (526.4- 713.6) 648.9 (489.2- 732.3) 178.8 (152.6- 239.6) 242.1 (207.0- 230.2)	.519 .419 .908 .618 .804 .883	.003 <.0001 .0401 .0101 .787 .059	.228 .207 .933 .391 .097 .0408	.003 .027 <.0001 .0003 .0014 <.0001 <.0001	.295 .389 .581 .732 .006 .0003

Stage I-III CD45	442.3 (89.0- 1080.0)	441.0 (89.1- 1080.3)	434.6 (251.4- 901.4)	471.5 (198.0- 710.0)	366.0 (208.8- 571.6)	.873	.053	.938	.0161	.557
Stage IV CD45	584.2 (110.1- 2199.7)	580.0 (110.0- 2199.7)	574.1 (214.0- 1178.6)	613.7 (119.0- 755.5)	653.5 (346.9- 1197.0)	.851	.326	.979	.182	.680

Table SIII. Phenotypic parameters in monocytic compartment according to CEBPA-status. Parameters are expressed as percentage of positive cells within cell compartment and/or its mean fluorescence intensity (MFI). Median values for phenotypic parameters are reported and compared by the Mann–Whitney test.

	Overall	CEBPA-wt	CEBPA-sm	CEBPA-dm	Controls	sm vs wt	sm vs crtl	sm vs dm	dm vs ctrl	dm vs wt
Monocytic cor	npartment									
% tot	5.6 (0.00-90.3)	5.9 (0.03-90.3)	11.2 (0.2-85.4)	2.6 (1.4-18.5)	4.6 (2.7-6.3)	.391	.163	.168	.048	.129
FSC	518.9 (338.0- 803.7)	513.0 (338.0- 803.7)	601.6 (388.0- 636.2)	595.9 (424.0- 679.9)	457.8 (420.2- 507.1)	.149	.0017	.803	<.0001	.0024
SSC	94.0 (39.0-353.4)	95.8 (39.0-353.4)	117.0 (51.0- 141.0)	80.5 (73.0-99.0)	99.0 (82.6-114.6)	.445	.125	.027	<.0001	.026
CD45	1680.2 (451.8- 339.0)	1688.0 (451.8- 3390.0)	1750.0 (618.0- 2519.5)	1410.4 (1040.9- 1905.0)	1856.7 (1182.3- 2608.9)	.793	.964	.251	.0023	.067
CD14 %	75 (0-100)	76.5 (0-100)	52 (5-100)	68 (32-96)	90 (83-97)	.115	.0004	.223	.0005	.337
CD14 MFI	644.7 (8.0- 3050.0)	636.6 (8.0- 3050.0)	662.9 (41.7- 1481.7)	666.8 (77.0- 1427.0)	1352.5 (901.1- 1957.1)	.911	.0019	.889	<.0001	.839
CD36	916.4 (30.4- 3387.5)	940.0 (30.4- 3387.5)	985.0 (149.6- 3064.3)	518.3 (84.4- 823.2)	1265.2 (724.4- 1806.1)	.459	.625	.0028	<.0001	<.0001
CD64	1957.5 (96.0- 7717.0)	1864.2 (96.0- 7526.0)	2501.0 (1828.2- 5343.0)	2939.6 (1885.0- 7717.0)	1671.6 (1201.8- 2627.1)	.0146	<.0001	.677	<.0001	<.0001
CD13 %	76.5 (0-100)	85 (0-100)	45 (15-90)	69 (30-90)	100 (95-100)	.0414	<.0001	.213	<.0001	.174
CD13 MFI	387.6 (14.1- 4522.3)	478.2 (16.0- 4522.3)	193.6 (14.1- 746.2)	278.0 (65.0- 1132.0)	1558.6 (805.7- 3184.9)	.0276	<.0001	.487	<.0001	.0358
CD11b	1020.3 (168.0- 6066.9)	1028.0 (168.0- 6066.9)	970.0 (641.7- 1691.7)	1080.2 (529.0- 1612.0)	1450.5 (658.9- 1841.0)	.298	.005	.419	.0034	.905
CD15	780.0 (30.0- 6630.9)	757.1 (30.0- 6630.9)	1543.0 (530.0- 3030.0)	730.7 (279.0- 1875.5)	586.1 (171.8- 783.6)	.0156	<.0001	.008	.0175	.848

CD33	901.9 (50.0- 3551.1)	800.0 (50.0- 3551.1)	1216.8 (240.0- 1393.3)	1264.5 (143.0- 1794.7)	1125.5 (278.9- 2218.9)	.333	.99	.328	.290	.0571
CD65	218.4 (15.0- 2494.0)	221.0 (15.0- 2494.0)	380.2 (27.0- 668.0)	197.5 (158.0- 930.0)	179.6 (51.8- 732.6)	.473	.0401	.108	.250	.608

Table SIV. Phenotypic parameters in erythroid compartment according to CEBPA-status. Parameters are expressed as percentage of positive cells within cell compartment and/or its mean fluorescence intensity (MFI). Median values for phenotypic parameters are reported and compared by the Mann–Whitney test.

	Overall	CEBPA-wt	CEBPA-sm	CEBPA-dm	Controls	sm vs wt	sm vs crtl	sm vs dm	dm vs ctrl	dm vs wt
Erythroid comp	artment									
% tot	1.9 (0.00-55.9)	1.6 (0.00-55.9)	0.7 (0.00-25.8)	7.2 (1.9-19.1)	8.9 (1.8-19.9)	.447	.0078	.0268	.349	.0004
FSC	232.0 (146.0- 468.5)	229.6 (146.0- 468.5)	250.5 (162.0- 351.9)	326.3 (191.0- 462.2)	221.9 (209.4- 253.7)	.130	.0356	.037	.0001	<.0001
SSC	22.8 (13.6-70.1)	22.3 (13.6-70.1)	24.8 (15.3-52.2)	26.6 (16.2-41.9)	19.8 (14.5-25.8)	.412	.230	.846	.0003	.0041
CD45	7.8 (1.0-553.5)	7.4 (1.0-382.0)	12.4 (2.2-553.5)	32.9 (1.0-208.1)	4.5 (2.2-13.3)	.287	.081	.301	.0064	.0038
CD117 %	0 (0-40)	0 (0-40)	0 (0-19)	13.5 (6-30)	7 (2-10)	.463	.089	.0022	<.0001	<.0001
CD36 %	94 (10-100)	95 (10-100)	87 (50-100)	65 (38-100)	100 (74-100)	.250	.013	.0314	<.0001	.0003
CD36 MFI	1342.0 (21.1- 7794.0)	1478.5 (21.1- 7794.0)	1243.1 (218.9- 1977.0)	684.5 (509.6- 2042.9)	1715.7 (1365.8- 2123.7)	.498	.016	.151	.0012	.0045
CD105 %	16 (0-73)	15 (0-73)	20 (8-40)	25 (12-70)	20 (14-33)	.342	.458	.047	.0294	.0002
CD105 MFI	111.0 (12.6- 1306.0)	97.6 (12.6-838.5)	270.0 (27.0- 444.8)	480.5 (163.0- 1306.0)	174.7 (110.0- 364.2)	.211	.859	.0014	<.0001	<.0001
CD71	2710.0 (19.0- 9143.4)	2951.4 (19.0- 9143.4)	2236.0 (825.0- 8263.3)	1332.5 (815.0- 3240.0)	2596.4 (2186.1- 4896.9)	.582	.226	.187	<.0001	.0028
CD71 CV	55.7 (15.1-168.5)	53.7 (15.1-168.5)	60.1 (21.5-83.0)	89.1 (46.5-115.0)	41.1 (22.4-57.4)	.829	.0246	.0014	<.0001	.0002

Table SV. TET2 and GATA2 gene mutation status in CEBPA-dm subset from the primary cohort.

ID			TET2				GATA2	
	status	exon	sequence change	protein change	status	exon	sequence change	protein change
11	wt				MUT	ex4	c.1396C>T	p.Leu321Phe (L321F)
63	wt				wt			
90	MUT	ex3.p4	c.1064G>A	p.Gly355Asp (G355D)	wt			
92	MUT	ex11.p3-4	c.5162T>G	p.Leu1721Trp (L1721W)	wt			
96	MUT	ex11.p4	c.5333A>G	p.His1778Arg (H1778R)	wt			
103	MUT	ex3.p10	c.2599T>C	p.Tyr867His (Y867H)	MUT	ex4	c.989G>A	p.Arg330Gly (R330Q)
109	wt				wt			
111	wt				wt			
148	MUT	ex11.p3-4	c.5162T>G	p.Leu1721Trp (L1721W)	wt			
222	wt				wt			
223	wt				wt			
228	MUT	ex11.p3-4	c.5162T>G	p.Leu1721Trp (L1721W)	wt			

ID refers to hierarchical cluster analysis (see Figure 5). All observed mutations were heterozygous. Mutation nomenclature is based on the reference sequence for TET2. GATA binding protein 2 (GATA2) transcript variant 1 (NM_001145661). Exon numbering is based also on NCBI reference transcript

Table SVI. Validation of phenotype-based classifier for CEBPA-dm cases on an independent cohort of AML cases. Results of the prospective application of euclidean distance based classifier. From the analysis of retrospective dataset, we selected a group of phenotypic parameters and developed a classifier. A classification threshold (3.26) was defined from the maximum distance between CEBPA-DM samples and a set of average values. The table reports the results of the application of the classifier on an independent cohort of 259 AML cases; the score represents the calculated distance for each case: the lower the score, the lower the distance from CEBPA-dm cases, the higher the probability of a CEBPA-dm status. Karyotype and molecular genetics is summarized for each case. ID is provided for CEBPA mutant cases (see Table SVII).

ID	Score		Genetic	S		ID	Score		Genetic	S	
		Karyotype	CEBPA	NPM1	FLT3			Karyotype	CEBPA	NPM1	FLT3
5	0.60	46, XY	DM	wt	wt		19.69	control	-	-	-
1	0.69	46, XX	DM	wt	wt		19.75	control	-	-	-
7	0.97	47, XX, +10	DM	wt	ITD		19.76	control	-	-	-
4	1.03	46, XX	DM	wt	wt		20.30	control	-	-	-
12	1.25	46, XY	DM	wt	wt		20.45	control	-	-	-
3	1.508	46, XY	DM	wt	wt		20.86	46,XY	wt	MUT	wt
11	1.509	46, XY	DM	wt	wt		21.00	complex	wt	wt	wt
6	2.31	46, XY	DM	wt	wt		22.00	46, XX, inv(16)	wt	wt	ITD
8	2.34	46, XX	DM	wt	wt		22.22	control	-	-	-
9	2.52	46, XY	DM	wt	wt		22.27	control	-	-	-
10	2.71	lack of growth	DM	wt	wt		24.19	control	-	-	-
2	3.15	46, XY	DM	wt	wt		24.41	control	-	-	-
	12.98	complex	wt	wt	wt		24.93	control	-	-	-
	13.13	control	-	-	-		25.56	complex	wt	wt	wt
	13.48	control	-	-	-		26.36	46,XX, t(8;21;21)	wt	wt	wt
18	15.14	46, XY	SM	wt	wt		26.41	47, XY, +8	wt	wt	wt
	17.09	control	-	-	-		26.94	control	-	-	-
	17.26	control	-	-	-		27.63	control	-	-	-
	18.09	control	-	-	-		27.82	46, XX	wt	wt	wt
	18.42	control	-	-	-		27.93	46;XY, t(2;22)	wt	wt	wt
	18.50	control	-	-	-		28.88	47,XX, t(16;16), +10	wt	wt	wt
	18.75	control	-	-	-		29.03	46, XX	wt	wt	wt
	18.91	46, XX	wt	MUT	wt		31.08	46, XX	wt	MUT	wt

ID	Score	Genetics					ID	Score	Genetics			
		Karyotype	CEBPA	NPM1	FLT3				Karyotype	CEBPA	NPM1	FLT3
	31.44	47, XY, +13	wt	wt	wt			49.35	46, XY	wt	wt	wt
	32.80	46, XY, t(3;11)(q?21;p ?15)	wt	wt	wt			49.82	46, XY	wt	MUT	wt
	33.76	46, XY, t(7;12)	wt	MUT	wt			49.90	46, XY	wt	wt	wt
	34.48	46, XX	wt	MUT	wt			50.13	46, XY	wt	MUT	ITD
	35.71	46, XY	wt	wt	D835Y			50.93	46, XY	wt	MUT	wt
	38.76	complex	wt	wt	wt			51.25	46, XX	wt	wt	wt
	39.03	lack of growth	wt	MUT	ITD			52.53	complex	wt	wt	wt
	39.41	complex	wt	wt	wt			52.86	complex	wt	wt	wt
	39.54	46, XY, del(9q)	wt	MUT	ITD			53.33	46, XY	wt	MUT	wt
	40.31	46, XY	wt	MUT	D835Y			53.64	46, XY, del(20q)	wt	wt	wt
14	40.62	46, XX	SM	wt	ITD			53.67	46, XX	wt	wt	wt
	40.70	46, XX	wt	MUT	ITD			54.88	46, XY	wt	MUT	wt
	40.84	46, XY	wt	MUT	ITD			55.03	complex	wt	wt	wt
	41.17	46, XY, i(16)(q11.1)	wt	wt	ITD			55.34	46, XX, inv(16)	wt	wt	wt
	42.20	46, XY	wt	MUT	wt			56.47	complex	wt	wt	wt
	42.82	lack of growth	wt	wt	wt			56.49	46, XX, inv(16)	wt	wt	D835Y
	43.39	46, XY	wt	wt	wt			56.88	46, XY	wt	wt	wt
	43.55	46, XY, +8	wt	wt	wt			57.66	46, XY, t(8;21)	wt	wt	wt
	43.71	46, XX	wt	wt	wt		16	58.54	46, XY	SM	MUT	wt
	45.00	46, XX	wt	MUT	wt			58.73	46, XX	wt	MUT	ITD
	45.02	46, XY,del(9q)	wt	MUT	wt			58.93	46, XY, t(8;21)	wt	wt	wt
	45.44	46, XY	wt	wt	wt			60.64	46, XX, inv(16)	wt	wt	wt
	47.19	46, XY	wt	MUT	ITD	-		60.74	46, XY, inv(16)	wt	wt	wt
	47.20	46,XX,add(11) (p?),add(14)(p 11)	wt	wt	wt			61.00	46, XX	wt	wt	wt
	48.41	47, XY, +8	wt	wt	wt			62.13	45, XY, -7	wt	wt	wt
	49.03	complex	wt	wt	wt			62.84	46, XY, t(8;21)	wt	wt	wt
	49.13	46, XX	wt	MUT	wt			62.96	46, XY	wt	wt	wt

ID	Score	Genetics				ID	Score	Genetics			
		Karyotype	CEBPA	NPM1	FLT3			Karyotype	CEBPA	NPM1	FLT3
	63.36	46, XY	wt	wt	wt		75.76	46, XY	wt	MUT	ITD
	64.72	46, XY, t(8;21)	wt	wt	wt		76.04	46, XY	wt	wt	wt
	64.83	46, XX	wt	MUT	ITD		76.48	46, XX	wt	wt	wt
	66.76	46, XY, t(6;9)	wt	wt	wt		77.68	46, XY	wt	MUT	wt
	67.27	46, XX, t(15;17)	wt	wt	ITD		78.85	46, XX, inv(16)	wt	wt	wt
	67.30	45, X, -Y	wt	MUT	D835Y		79.14	46, XY	wt	MUT	ITD
	68.56	complex	wt	wt	wt		79.41	46, XY, t(6;9)	wt	wt	wt
	69.13	complex	wt	wt	wt		79.65	46, XY	wt	MUT	wt
	69.90	46, XX	wt	wt	wt		80.54	46, XX, t(4;14)	wt	MUT	ITD
	70.53	46, XY	wt	wt	wt		80.85	46, XX, t(15;17)	wt	wt	ITD
	70.56	complex	wt	wt	wt		80.88	46, XX	wt	wt	wt
	70.57	46, XY	wt	wt	wt		81.15	46, XX	wt	wt	ITD
	70.79	complex	wt	wt	wt		81.37	45, XX, del(5q)	wt	wt	wt
13	71.11	47, XX, +10	SM	wt	wt		82.03	47, XY, +13	wt	wt	wt
	71.94	46, XY, t(6;9)	wt	wt	ITD		82.47	46, XY	wt	wt	wt
	72.03	46, XY, del(9q)	wt	MUT	wt		84.39	48, XX, +2mar	wt	wt	wt
	72.20	46,XY, t(8;21)	wt	wt	wt		84.47	46, XY	wt	wt	wt
	72.27	46, XY	wt	wt	wt		85.28	45, X, -Y	wt	wt	wt
	73.10	46, XY	wt	MUT	wt		86.75	45,X, -Y, t(8;21)	wt	wt	wt
	73.16	46, XX	wt	wt	wt		87.03	46, XX	wt	MUT	wt
	73.78	46, XX	wt	wt	wt		87.30	46, XX	wt	MUT	D835Y
	74.21	47, XY, +8	wt	wt	wt		87.32	46, XY	wt	MUT	wt
	74.27	46, XX, t(2;11q22), del(5q22)	wt	wt	wt		87.57	complex	wt	wt	wt
	74.52	46, XX	wt	MUT	ITD		87.70	47, XX, +8	wt	wt	wt
	74.78	46, XY	wt	wt	wt		87.75	46, XY	wt	wt	ITD
	75.03	46, XY	wt	wt	wt		88.89	47, XY, +13	wt	wt	D835Y
	75.20	46, XX, t(15;17)	wt	wt	wt		89.96	46, XX	wt	wt	wt
	75.37	46, XY, t(8;21)	wt	wt	wt		90.14	47, XY, +8	wt	wt	wt
	75.67	46, XY	wt	MUT	wt		91.86	46, XY	wt	MUT	ITD

ID	Score	Genetics				ID	Score	Genetics			
		Karyotype	CEBPA	NPM1	FLT3			Karyotype	CEBPA	NPM1	FLT3
	92.17	46, XX	wt	MUT	ITD		107.41	46, XY, t(15;17)	wt	wt	ITD
	93.34	46, XX	wt	wt	wt		107.74	46, XY	wt	wt	wt
	94.22	46, XY	wt	MUT	wt		108.00	46, XY, t(15;17)	wt	wt	wt
	94.33	46, XY	wt	wt	ITD		108.15	complex	wt	wt	wt
	94.46	46, XY	wt	wt	D835Y		108.63	46, XY, t(15;17)	wt	wt	ITD
	95.27	46, XY	wt	MUT	D835Y		108.92	46, XX	wt	wt	wt
	95.69	complex	wt	wt	wt		109.15	46, XY, t(15;17), del(9q)	wt	wt	wt
	96.01	46, XX	wt	MUT	ITD		109.37	46, XX	wt	MUT	D835Y
	96.28	47, XX, +21	wt	wt	wt		109.93	46, XX	wt	MUT	wt
	96.32	46, XY	wt	MUT	ITD		110.23	46, XY, t(6;11)	wt	wt	wt
	97.06	complex	wt	wt	wt		110.89	46, XY, t(15;17)	wt	wt	wt
	97.16	46, XY	wt	wt	wt		112.23	46, XY	wt	MUT	wt
	97.64	46, XY	wt	wt	wt		112.67	46, XY	wt	MUT	wt
	98.04	46, XX, del(11q23)	wt	MUT	wt		113.28	47, XX,+21, del(20q)	wt	wt	ITD
	98.39	46, XX	wt	wt	ITD		113.93	46, XY	wt	MUT	D835Y
	98.79	46, XY, t(11;19)	wt	wt	wt		114.06	46, XY, t(15;17)	wt	wt	wt
	98.85	complex	wt	wt	wt		114.17	46, XX	wt	MUT	wt
	100.02	NA	wt	MUT	ITD		114.34	46, XY	wt	wt	wt
	100.64	NA	wt	wt	wt		114.99	46, XX, del(7q)	wt	wt	wt
	100.73	46, XY, del(9q)	wt	MUT	wt		115.10	46, XX	wt	wt	wt
	101.15	complex	wt	wt	wt		115.16	46, XX	wt	wt	wt
	101.39	46, XY	wt	MUT	ITD		115.28	46, XY	wt	MUT	wt
	101.55	complex	wt	wt	wt		115.62	46, XX, t(8;21)	wt	wt	ITD
	101.61	47, XX, +14	wt	wt	wt		116.61	46, XY	wt	MUT	ITD
	103.93	46, XX	wt	wt	wt		116.75	47, XY, +8	wt	wt	ITD
17	104.46	46, XY	SM	wt	wt		117.51	NA	wt	wt	wt
	104.54	46, XY	wt	MUT	wt		117.82	46, XY	wt	wt	wt
	104.65	46, XX	wt	MUT	D835Y		118.65	46, XY	wt	wt	wt
	106.07	46, XX	wt	MUT	D835Y		119.18	46, XX	wt	MUT	wt
	106.98	46, XX, t(9;22)	wt	wt	wt		119.90	46, XY, t(15;17)	wt	wt	wt

ID	Score	Genetics				ID	Score	Genetics			
		Karyotype	CEBPA	NPM1	FLT3			Karyotype	CEBPA	NPM1	FLT3
	119.98	47, XX, +8	wt	wt	D835Y		138.96	complex	wt	MUT	wt
	121.20	46, XX	wt	MUT	wt		140.25	46, XY	wt	wt	wt
	121.41	46, XY, del(11q23)	wt	wt	wt		140.78	46, XY	wt	wt	wt
	123.17	46, XY, t(15;17)	wt	wt	ITD		141.29	46, XX, del(6q)	wt	MUT	wt
	124.07	46, XX	wt	MUT	ITD		141.94	46, XX	wt	MUT	ITD
	124.19	46, XX	wt	wt	wt		142.02	47, XY, +21	wt	wt	wt
	124.44	46, XY	wt	MUT	wt		142.22	46, XY	wt	MUT	ITD
	125.63	46, XX, del(9q)	wt	MUT	ITD		144.06	46, XX	wt	MUT	ITD
	125.97	46, XY, del(7q22)	wt	wt	wt		144.24	46, XX, del(17p)	wt	MUT	wt
	126.04	46, XY	wt	MUT	wt		144.85	46, XX	wt	MUT	wt
	127.67	46, XX, t(8;21)	wt	wt	wt		147.38	46, XY	wt	MUT	wt
	128.05	46, XX, inv(16)	wt	wt	ITD		149.35	47, XY, +8	wt	wt	wt
	128.60	complex	wt	wt	wt		150.27	46, XX, inv(12)(p13.3q1 3.1)	wt	wt	wt
	129.14	46, XX, inv(4)(p?14q.2 1.3)	wt	MUT	wt		152.37	46, XY	wt	MUT	wt
	129.82	45, XY, -7	wt	wt	wt		153.27	46, XY	wt	MUT	ITD
15	131.11	46, XY	SM	MUT	wt		153.68	45, XY, -7	wt	wt	D835Y
	131.33	46, XX	wt	MUT	ITD		154.22	46, XY, t(15;17)	wt	wt	wt
	131.78	46, XY	wt	MUT	D835Y		159.04	46, XY	wt	wt	ITD
	131.89	46, XY	wt	wt	ITD		160.07	46, XY, t(9;11)	wt	wt	wt
	132.25	46, XY	wt	wt	wt		160.48	46, XX	wt	MUT	ITD
	133.21	46, XY	wt	wt	wt		161.19	46, XX	wt	MUT	wt
	133.22	complex	wt	wt	ITD		161.45	46, XY	wt	wt	wt
	136.08	46, XX	wt	wt	ITD		164.00	46, XY	wt	MUT	ITD
	137.14	46, XY	wt	wt	ITD		165.29	46, XY	wt	MUT	ITD
	138.65	46, XY	wt	wt	wt		169.43	46, XX	wt	MUT	ITD

ID	Score	Genetics				ID	Score	Genetics			
		Karyotype	CEBPA	NPM1	FLT3			Karyotype	CEBPA	NPM1	FLT3
	171.20	46, XY	wt	MUT	wt		193.11	46, XX	wt	MUT	wt
	177.78	46, XX	wt	MUT	wt		194.25	46, XX	wt	MUT	wt
	182.70	46, XX	wt	MUT	ITD		195.78	46, XY	wt	MUT	ITD
	186.52	46, XY	wt	MUT	ITD		200.08	46, XX	wt	MUT	wt
	189.76	46, XY	wt	MUT	ITD		210.23	46, XX	wt	MUT	ITD
	189.93	47, XY, +8	wt	wt	ITD		228.15	46, XX	wt	MUT	wt

Abbreviations: NA, not available; ITD, internal tandem duplication; MUT, mutated; SM, single mutation; DM, double mutation; wt, wild type. Lack of growth means no metaphases.

ID, sm/dm	Mutation 1 – P	osition in CDS	Mutation 1- Position in protein	Mutat	Mutation 2 – Position in protein	
	N-term, nt-29_518	C-term, nt-816_1171	AA consequence	Middle, nt-469_858	C-term, nt-816_1171	AA consequence
1, dm	c.196_197insT		p.A66Vfs*107		c.902_934dup33bp	p.312_322insHKAKQ RNVETQ
2, dm	c.232_271delinsGA GGT		p.L78Efs*95		c.937_939delAAG	p.K313del
3, dm	c.241delC		p.L81Cfs*158		c.890G>C	p.R297P
4, dm	c.284_285insACG G		p.G96Rfs*108		c.913_927delCAGCGCAACGTGG AG	p.Q305_E309del
5, dm	c.221_222insAA		p.N74Kfs*160		c.937_938 TGTCGCAGCGCATCATGGAGA CCCATCACA	p.Q312_K313insMSQ RIMETHH
6, dm	c.177_194dup ACGTCCATCGA CATCGG		p.S6Rfs*165		c.912_929del GCAACGTGGAGAC	p.R306_Q311del
7, dm	c.146dupC		p.E50Gfs*107		c.913_918dupCAGCGC, A919delinsG	p.Q 305_R306dup, N307delinsD
8, dm	c.68delC		p.P23Rfs*159		c.917_918GGAGCG	p.R306_N307insRE
9, dm	c.68delC		p.P23Rfs*159		c.937_939dupAAG	p.K313dup
10, dm	c.87C>A, 92_126delTCGGC TTTCCCCGGGG CGCGGGCCCCG CGCAGCCT		p.F31Sfs*94		c.917_918insTTG	p.R306_N307insC
11, dm	c.348_349delCG		p.G117Rfs*167	c.569C>A		p.S190*
12, dm		c.937_939dupAAG	p.K313dup		c.971T>A	p.L324Q
13, sm	c.134delC		p.P46Lfs*158			
14, sm	c.166dupT		p.C56Lfs*107			

Table SVII. Characterization of CEBPA mutations in the validation cohort.

15, sm	c.16_20dupGACTT		p.F6Lfs*17		
16, sm		c.925_935delinsCT	p.309E_312QdelinsL		
17, sm		c.916dupC	p.P306fs*319		
18, sm		c.913_927delCAG CGCAACGTGGA G	p.Q305_E309del		

Abbreviations: AA amino acid number; CDS coding DNA sequence, ins, insertion; del, deletion; dup, duplication, nt, nucleotide. Nucleotides numbered from the major translational start codon at nucleotide position mutated. NCBI Reference Sequence is NM_004364.4. The description of sequence variants is according to nomenclature of HVGS site. The part in the Middle (nt-469_858) of the coding sequence is not reported for Mutation 1 because no patients with single mutation in this region were observed.